Numerical prediction of jet-noise based on ``first principles''
Matematičeskoe modelirovanie, Tome 19 (2007) no. 7, pp. 5-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief outline is presented of a numerical system developed by the authors during the last five years and aimed at building a non-empirical (i.e., based on “first principles”) tool for prediction of the noise radiated by the exhaust jets of aviation engines with an industrially useful accuracy of 2–3 dB and as wide frequency range as possible. In this system the computation of the aerodynamic and turbulent characteristics of the jets is performed with the use of Large-Eddy Simulation (LES) coupled with an implicit high-order finite-volume scheme implemented on structured multi-block grids in curvilinear coordinates. For the far-field noise computation the system uses the integral method of Ffowcs–Williams/Hawkings (FWH). Thanks to a number of original features in the implementation of both the aerodynamic and aeroacoustic parts of the system, even on relatively coarse grids with only 2–5 million nodes, the system yields results which tangibly surpass in terms of accuracy those obtained by other authors on grids with tens of millions of nodes. The capabilities of the system are demonstrated by examples of computation of aerodynamic and noise characteristics of simple round jets within a wide range of Mach number (from 0.4 to 2) and temperature ratio (up to ${\sim}3$). Other than that, examples are presented of applications to the noise prediction of a number of more complex jets, gradually getting closer to the real exhaust jets of modern engines. In particular, we consider under-expanded sonic jets with intense shocks, jets from dual nozzles with staggered exits, and, finally, an exhaust system including a dual nozzle with an extended central body. The accuracy of the noise prediction in all the considered cases is close to the “target” accuracy of 2–3 dB for both the integrated noise and its directivity and the spectral characteristics. The well-resolved frequency range corresponds to a maximum diameter Strouhal number ranging from 2 to 5, depending of the size of the grid and the jet's parameters.
@article{MM_2007_19_7_a1,
     author = {M. L. Shur and Ph. R. Spalart and M. Kh. Strelets},
     title = {Numerical prediction of jet-noise based on ``first principles''},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_7_a1/}
}
TY  - JOUR
AU  - M. L. Shur
AU  - Ph. R. Spalart
AU  - M. Kh. Strelets
TI  - Numerical prediction of jet-noise based on ``first principles''
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 5
EP  - 26
VL  - 19
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_7_a1/
LA  - ru
ID  - MM_2007_19_7_a1
ER  - 
%0 Journal Article
%A M. L. Shur
%A Ph. R. Spalart
%A M. Kh. Strelets
%T Numerical prediction of jet-noise based on ``first principles''
%J Matematičeskoe modelirovanie
%D 2007
%P 5-26
%V 19
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_7_a1/
%G ru
%F MM_2007_19_7_a1
M. L. Shur; Ph. R. Spalart; M. Kh. Strelets. Numerical prediction of jet-noise based on ``first principles''. Matematičeskoe modelirovanie, Tome 19 (2007) no. 7, pp. 5-26. http://geodesic.mathdoc.fr/item/MM_2007_19_7_a1/

[1] P. R. Gliebe, T. F. Balsa, “Aeroacoustics of axisymmetric single- and dual-flow exhaust nozzles”, Journal of Aircraft, 15:11 (1978), 743–749 | DOI

[2] A. Khavaran, “Role of anisotropy in turbulent mixing noise”, AIAA Journal, 37:7 (1999), 832–841 | DOI

[3] C. K. W. Tam, L. Auriault, “Jet mixing noise from fine-scale turbulence”, AIAA Journal, 37:2 (1999), 145–153 | DOI

[4] M. L. Shur, P. R. Spalart, M. Kh. Strelets, “Noise prediction for increasingly complex jets. Part I: Methods and tests”, International Journal of Aeroacoustics, 4:3–4 (2005), 213–246 | DOI

[5] M. L. Shur, P. R. Spalart, M. Kh. Strelets, “Noise prediction for increasingly complex jets. Part II: Applications”, International Journal of Aeroacoustics, 4:3–4 (2005), 247–266 | DOI

[6] N. Andersson, L.-E. Eriksson, L. Davidson, “Large-eddy simulation of subsonic turbulent jets and their radiated sound”, AIAA Journal, 43:9 (2005), 1899–1912 | DOI

[7] N. Andersson, L.-E. Eriksson, L. Davidson, “LES prediction of flow and acoustic field of a coaxial jet”, AIAA, 2005, 2884

[8] D. J. Bodony, S. K. Lele, “On using large-eddy simulation for prediction of noise from cold and heated turbulent jets”, Physics of Fluids, 17:8 (2005), 085103 | DOI

[9] D. J. Bodony, S. K. Lele, “Generation of low frequency sound in turbulent jets”, AIAA, 2005, 3041

[10] C. Bogey, C. Bailly, “Effects of inflow conditions and forcing on subsonic jet flows and noise”, AIAA Journal, 43:5 (2005), 1000–1007 | DOI

[11] C. Bogey, C. Bailly, “Investigation of sound sources in subsonic jets using causality methods on LES data”, AIAA, 2005, 2885

[12] P. Lew, P. G. A. Blaisdell, A. S. Lyrintzis, “Recent progress of hot jet aeroacoustics using 3-D large-eddy simulation”, AIAA Paper, 2005, 3084

[13] N. Lupoglazoff, G. Rahier, F. Vuillot, “Application of the CEDRE unstructured flow solver to jet noise computations”, Proc. (CD-ROM) of the 1st European Conference for Aerospace Sciences (EUCASS) (Moscow, 2005)

[14] U. Paliath, P. J. Morris, “Prediction of jet noise from circular beveled nozzles”, AIAA, 2005, 3096

[15] A. Vuillemin, P. Loheac, G. Rahier, F. Vuillot, N. Lupoglazoff, “Aeroacoustic numerical method assessment for a double stream nozzle”, AIAA, 2005, 3043

[16] A. Uzun, G. A. Blaisdell, A. S. Lyrintzis, “Impact of subgrid-scale models on jet turbulence and noise”, AIAA Journal, 44:6 (2006), 1365–1368 | DOI

[17] D. J. Bodony, S. K. Lele, “Review of the current status of jet noise prediction using large-eddy simulation”, AIAA, 2006, 0486

[18] J. P. Boris, F. F. Grinstein, E. S. Oran, R. L. Kolbe, “New insights into large eddy simulation”, Fluid Dynamics Research, 10 (1992), 199–228 | DOI

[19] C. Fureby, F. F. Grinstein, “Monotonically integrated large eddy simulation of free shear flows”, AIAA Journal, 37:5 (1999), 544–556 | DOI

[20] J. E. Ffowcs Williams, D. L. Hawkings, “Sound generated by turbulence and surfaces in unsteady motion”, Phil. Trans. R. Soc. Lond. A, 264 (1969), 321–342 | DOI | Zbl

[21] A. P. Dowling, “Effects of motion on acoustic sources”, Modern Methods in Analytical Acoustics, Lecture Notes, Springer-Verlag, London, 1992, 406–426

[22] K. S. Brentner, F. Farassat, “Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces”, AIAA Journal, 36:8 (1998), 1379–1386 | DOI

[23] M. Kh. Strelets, “Detached eddy simulation of massively separated flows”, AIAA, 2001, 0879

[24] P. L. Roe, “Approximate Rieman solvers, parameter vectors and difference schemes”, Journal of Comput. Phys., 46 (1981), 357–378 | DOI | MR

[25] B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulations of waves”, Mathematics of Computation, 31 (1977), 629–651 | DOI | MR | Zbl

[26] D. J. Hill, D. I. Pullin, “Hybrid tuned center-difference-WENO method for large eddy simulation in the presence of strong shocks”, Journal of Computational Physics, 194 (2004), 435–450 | DOI | Zbl

[27] G. D. Van Albada, B. Van Leer, W. W. Roberts, “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophysics, 108 (1982), 76–84 | Zbl

[28] K. Viswanathan, “Aeroacoustics of hot jets”, Journal of Fluid Mechanics, 516 (2004), 39–82 | DOI | Zbl

[29] J. C. Lau, P. J. Morris, M. J. Fisher, “Measurements in subsonic and supersonic free jets using a laser velocimeter”, Journal of Fluid Mechanics, 93 (1979), 1–27 | DOI

[30] J. C. Lau, “Effect of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets”, Journal of Fluid Mechanics, 105 (1981), 193–218 | DOI

[31] V. H. Arakeri, A. Krothapalli, V. Siddavaram, M. B. Alkislar, L. M. Lourenco, “On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet”, Journal of Fluid Mechanics, 490 (2003), 75–98 | DOI | Zbl

[32] H. K. Tanna, “An experimental study of jet noise. Part I: Turbulent mixing noise”, Journal of Sound and Vibration, 50 (1977), 405–428 | DOI

[33] C. K. W. Tam, “Supersonic jet noise”, Annual Review of Fluid Mechanics, 27 (1995), 17–43 | DOI

[34] H. K. Tanna, “An experimental study of jet noise. Part II: Shock associated noise”, Journal of Sound and Vibration, 50 (1977), 429–444 | DOI

[35] K. Viswanathan, “Nozzle shaping for reduction of jet noise from single jets”, AIAA Journal, 43:5 (2005), 1008–1022 | DOI | MR

[36] K. Viswanathan, “Parametric study of noise from dual-stream nozzles”, Journal of Fluid Mechanics, 521 (2004), 35–68 | DOI | Zbl

[37] B. Callender, E. Gutmark, S. Martens, “Far-field acoustic investigation into chevron nozzle mechanisms and trends”, AIAA Journal, 43:1 (2005), 87–95 | DOI | MR