Numerical solution of 2D viscous fluid dynamics problems using finite volume method (FVM) on triangular grid
Matematičeskoe modelirovanie, Tome 19 (2007) no. 6, pp. 71-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In present work the algorithm for solving 2D steady viscous fluid flow problems using FVM on triangular grid has been developed. The method of extrapolation of unknowns to the boundary has been presented. This method allowed us to avoid using hybrid meshes, containing quadrangles near the boundary, and restrict ourselves to applying only triangles, that made the algorithm uniform and practically feasible. Some testing problems such as backward facing step flow and lid-driven cavity flow have been presented.
@article{MM_2007_19_6_a6,
     author = {A. M. Bubenchikov and D. K. Firsov and M. A. Kotovshchikova},
     title = {Numerical solution of {2D} viscous fluid dynamics problems using finite volume method {(FVM)} on triangular grid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--85},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_6_a6/}
}
TY  - JOUR
AU  - A. M. Bubenchikov
AU  - D. K. Firsov
AU  - M. A. Kotovshchikova
TI  - Numerical solution of 2D viscous fluid dynamics problems using finite volume method (FVM) on triangular grid
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 71
EP  - 85
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_6_a6/
LA  - ru
ID  - MM_2007_19_6_a6
ER  - 
%0 Journal Article
%A A. M. Bubenchikov
%A D. K. Firsov
%A M. A. Kotovshchikova
%T Numerical solution of 2D viscous fluid dynamics problems using finite volume method (FVM) on triangular grid
%J Matematičeskoe modelirovanie
%D 2007
%P 71-85
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_6_a6/
%G ru
%F MM_2007_19_6_a6
A. M. Bubenchikov; D. K. Firsov; M. A. Kotovshchikova. Numerical solution of 2D viscous fluid dynamics problems using finite volume method (FVM) on triangular grid. Matematičeskoe modelirovanie, Tome 19 (2007) no. 6, pp. 71-85. http://geodesic.mathdoc.fr/item/MM_2007_19_6_a6/

[1] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Verlag, Berlin, 1988 | MR

[2] M. Piller, E. Stalio, “Finite-volume compact schemes on staggered grids”, Journal of Computational Physics, 197(1) (2004), 299–340 | DOI | Zbl

[3] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[4] T. G. Elizarova, V. V. Seregin, “Approksimatsiya kvazigazodinamicheskikh uravnenii na treugolnykh setkakh”, Vestnik Moskovskogo Universiteta, seriya 3. Fizika. Astronomiya, 2005, no. 4, 15–18 | MR | Zbl

[5] T. G. Elizarova, Matematicheskie modeli i chislennye metody v dinamike gaza i zhidkosti. Podkhody, osnovannye na sistemakh kvazigazodinamicheskikh uravnenii, Fizicheskii fakultet MGU, M., 2005 | Zbl

[6] V. P. Ilin, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izdatelstvo Instituta Matematiki, Novosibirsk, 2000

[7] M. E. Hubbard, “Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids”, Journal of Computational Physics, 155 (1999), 54–74 | DOI | MR | Zbl

[8] Ji-Wen Wang, Ru-Xu Liu, “A comparative study of finite volume methods on unstructured meshes for simula-tion of 2D shallow water wave problems”, Mathematics and Computers in Simulations, 53 (2000), 171–184 | DOI | MR

[9] Jonathan Richard Shewchuk, “Delaunay refinement algorithms for triangular mesh generation”, Computational Geometry, 22 (2002), 21–74 | DOI | MR | Zbl

[10] Carl Ollivier-Gooch, Michael Van Altena, “A high-order-Accurate Unstructured Mesh Finite-Volume Scheme for the Advection-Diffusion Equation”, Journal of Comput. Phys., 181 (2002), 729–752 | DOI | Zbl

[11] Jeffrey A. Wright, Richard W. Smith, “An Edge-Based Method for the Incompressible Navier–Stokes Equations on Polygonal Meshes”, Journal of Comput. Phys., 169 (2001), 24–43 | DOI | Zbl

[12] Dongjoo Kim, Haecheon Choi, “A second order Time-Accurate Finite Volume Method for Unsteady Incom-pressible Flow on Hybrid Unstructured Grids”, Journal of Comput. Phys., 162 (2000), 411–428 | DOI | MR | Zbl

[13] Yong Zhao, Baili Zhang, “A High-order characteristics upwind FV method for incompressible flow and heat transfer simulation on unstructured grids”, Comput. Methods Appl. Mech. Engrg., 190 (2000), 733–756 | DOI | MR | Zbl

[14] C. T. Chan, K. Anastasiou, “Solution of incompressible flows with or without a free surface using the finite volume method on unstructured triangular meshes”, Int. J. Numer. Meth. Fluids, 29 (1999), 35–57 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[15] Sylvain Boivin, Florent Cayre, Jean-Marc Herard, “A finite volume method to solve the Navier–Stokes equations for incompressible flows on unstructured meshes”, Int. J. Therm. Sci., 39 (2000), 806–825 | DOI

[16] C. Patankar, Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984

[17] C. M. Rhie, W. L. Chow, “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation”, AIAA Journal, 21:11 (1983), 1525–1532 | DOI | Zbl

[18] Yousef Saad, Iterative Methods for Sparse Linear Systems, 2000

[19] D. C. Wan, B. S. V. Patnaik, G. W. Wei, “Discrete Singular Convolution-Finite Subdomain Method for the Solution of Incompressible Viscous Flows”, Journal of Comput. Phys., 180 (2002), 229–255 | DOI | Zbl

[20] B. F. Armaly, F. Durst, J. C. F. Pereira, B. Schonung, “Experimental and theoretical investigation of backward-facing step flow”, J. Fluid Mech., 127:473 (1983)

[21] S. Ozawa, “Numerical studies of steady flow in a two-dimensional square cavity at high Reynolds numbers”, J. Phys. Soc., 38 (1975), 889 | DOI

[22] A. J. Baker, Finite Element Computational Fluid Mechanics, Hemisphere Publishing Corporation, Washington, 1983 | MR | Zbl