Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_6_a5, author = {E. A. Novikov and A. O. Tuzov}, title = {A non-homogeneous method of third order for additive}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {61--70}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_6_a5/} }
E. A. Novikov; A. O. Tuzov. A non-homogeneous method of third order for additive. Matematičeskoe modelirovanie, Tome 19 (2007) no. 6, pp. 61-70. http://geodesic.mathdoc.fr/item/MM_2007_19_6_a5/
[1] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997 | MR
[2] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[3] Cooper G. J., Sayfy A., “Additive Runge–Kutta Methods for Stiff Ordinary Differential Equations”, Mathematics of Computation, 40:161 (1983), 207–218 | DOI | MR | Zbl
[4] Novikov E. A., “Neodnorodnyi metod vtorogo poryadka dlya zhestkikh sistem”, Vychislitelnye tekhnologii, 10:2 (2005), 74–86 | Zbl
[5] Gear C. W., “The automatic integration of stiff ordinary differential equations”, Proc. IFIP Congress, 1968, 81–85 | MR
[6] Merson R. H., “An operational methods for integration processes”, Proc. Symp. on Data Proc. Weapons Research Establishment (Salisbury, Australia), 1957
[7] Fehlberg E., “Classical fifth-, sixth-, seventh- and eighth order Runge–Kutta formulas with step size control”, Computing, 4 (1969), 93–106 | DOI | MR | Zbl
[8] Enright W. H., Hull T. E., “Comparing numerical methods for the solutions of stiff systems of ODE's”, BIT, 15 (1975), 10–48 | DOI | Zbl