Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_6_a2, author = {A. V. Kolobov and V. V. Gubernov and A. A. Polezhaev}, title = {Fisher type waves in a~model of invasive tumor growth}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--42}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_6_a2/} }
TY - JOUR AU - A. V. Kolobov AU - V. V. Gubernov AU - A. A. Polezhaev TI - Fisher type waves in a~model of invasive tumor growth JO - Matematičeskoe modelirovanie PY - 2007 SP - 31 EP - 42 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_6_a2/ LA - ru ID - MM_2007_19_6_a2 ER -
A. V. Kolobov; V. V. Gubernov; A. A. Polezhaev. Fisher type waves in a~model of invasive tumor growth. Matematičeskoe modelirovanie, Tome 19 (2007) no. 6, pp. 31-42. http://geodesic.mathdoc.fr/item/MM_2007_19_6_a2/
[1] H. M. Byrne, “Using mathematics to study solid tumour growth”, Proceedings of the 9th General Meetings of European Women in Mathematics, 1999, 81–107 | MR
[2] L. A. Kunz-Schughart, M. Kreutz, R. Knuechel, “Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology”, Int. J. Exp. Pathol., 79 (1998), 1–23 | DOI
[3] A. C. Burton, “Rate of growth of solid tumours as a problem of diffusion”, Growth, 30 (1966), 157–176
[4] H. Greenspan, “Models for the growth of solid tumor by diffusion”, Stud. Appl. Math., 51 (1972), 317–340 | Zbl
[5] J. A. Adam, “A mathematical model of tumor growth by diffusion”, Math. Biosci., 94 (1989), 155–157 | DOI | MR
[6] J. A. Adam, S. A. Maggelakis, “Diffusion regulated characteristics of a spherical prevascular carcinoma”, Bull. Math. Biol., 52 (1990), 549–582 | Zbl
[7] M. A. J. Chaplain, D. L. Benson, P.K. Maini, “Nonlinear diffusion of a growth inhibitory factor in multicell spheroids”, Math. Biosci., 121 (1994), 1–13 | DOI | Zbl
[8] H. M. Byrne, M. A. J. Chaplain, “Growth of nonnecrotic tumours in the presence and absence of inhibitors”, Math. Biosci., 130 (1995), 151–181 | DOI | Zbl
[9] H. M. Byrne, M. A. J. Chaplain, “Growth of necrotic tumors in the presence and absence of inhibitors”, Math. Biosci., 135 (1996), 187–216 | DOI | Zbl
[10] J. P. Ward, J. R. King, “Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures”, Math. Biosci., 181 (2003), 177–207 | DOI | MR | Zbl
[11] B. Bazaliy, A. Friedman, “Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: an application to a model of tumour growth”, Indiana Univ. Math. J., 52 (2003), 1265–1304 | DOI | MR | Zbl
[12] H. Bueno, G. Ercole, A. Zumpano, “Asymptotic behaviour of quasi-stationary solutions of a nonlinear problem modelling the growth of tumours”, Nonlinearity, 18 (2005), 1629–1642 | DOI | MR | Zbl
[13] X. Chen, A. Friedman, “A free boundary problem for elliptic-hyperbolic system: an application to tumor growth”, SIAM J. Math. Anal., 35 (2003), 974–986 | DOI | MR | Zbl
[14] Y. Tao, M. Chen, “An elliptic-hyperbolic free boundary problem modelling cancer therapy”, Nonlinearity, 19 (2006), 419–440 | DOI | MR | Zbl
[15] R. M. Sutherland, “Cell and environment interactions in tumor microregions: the multicell spheroid model”, Science, 240 (1988), 177–184 | DOI
[16] M. Castro, C. Molina-Paris, T. S. Deisboeck, “Tumor growth instability and the onset of invasion”, Phys. Rev. E, 72 (2005), 041907 | DOI
[17] A. V. Gusev, A. A. Polezhaev, “Evolyutsiya kletochnoi populyatsii pri nalichii maksimalnoi dopustimoi summarnoi plotnosti kletok”, Kratkie soobscheniya po fizike FIAN, 1997, no. 11–12, 85–90
[18] A. V. Kolobov, A. A. Polezhaev, G. I. Solyanyk, “The role of cell motility in metastatic cell dominance phenomenon: analysis by a mathematical model”, J. of Theoretical Medicine, 3 (2001), 63–77
[19] A. V. Kolobov, A. A. Polezhaev, G. I. Solyanyk, “Stability of tumour shape in pre-angiogenic stage of growth depends on the migration capacity of cancer cells”, Mathematical Modelling and Computing in Biology and Medicine, ed. V. Capasso, Progetto Leonardo, Bologna, 2003, 603–609 | MR
[20] S. A. Astanin, A. V. Kolobov, A. I. Lobanov, T. P. Pimenova, A. A. Polezhaev, G. I. Solyanik, “Vliyanie prostranstvennoi geterogennosti sredy na rost i invaziyu opukholi. Analiz metodami matematicheskogo modelirovaniya”, 2006 (to appear)
[21] R. A. Fisher, “The wave of advance of advantageneous genes”, Ann. Eugenics, 7 (1937), 355–369 | Zbl
[22] J. A. Sherratt, “Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations”, Proc. R. Soc. Lond. B, 241 (1990), 29–36 | DOI
[23] P. Traqui, “From passive diffusion to active cellular migration in mathematical models of tumor invasion”, Acta Biotheoretical, 43 (1995), 443–464 | DOI
[24] K. R. Swanson, C. Bridge, J. D. Murray, E. C. Alvord Jr., “Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion”, Journal of the Neurological Sciences, 216 (2003), 1–10 | DOI
[25] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. Mosk. gos. un-ta. Ser. Mat. mekh., 1 (1937), 1–26
[26] V. V. Gubernov, G. N. Mercer, H. S. Sidhu, R. O. Weber, “Evans function stability of combustion waves”, SIAM J. Appl. Math., 63 (2003), 1259–1275 | DOI | MR | Zbl
[27] U. Ebert, W. Saarloos, “Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts”, Physica D, 146 (2000), 1–99 | DOI | MR | Zbl