Using the channels and jokers method for the Rosenzweig--Macarthur system dynamics description
Matematičeskoe modelirovanie, Tome 19 (2007) no. 6, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nowadays, methods of nonlinear dynamics and asymptotical analysis are widely used in biological systems research. This article reviews the Rosenzweig–Macarthur system, a model of the simple biological system (a tritrophic food chain). This system is remarkable for the multiplicity of its dynamical modes. A new technique of the numerical modeling, the channels and jokers method, is used. The latter method is based on detection (by means of asymptotical analysis) of regions with wide horizon of predictability and small number of essential variables (which regions are called channels), and regions of poor predictability (jokers). Then, distinct numerical modelling algorithms are used for channels and jokers separately. It is shown, that the technique proposed lets obtain both good quantitative and qualitative idea of the model dynamics.
@article{MM_2007_19_6_a0,
     author = {M.-G. M. Zulpukarov and G. G. Malinetskii and A. V. Podlazov},
     title = {Using the channels and jokers method for the {Rosenzweig--Macarthur} system dynamics description},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_6_a0/}
}
TY  - JOUR
AU  - M.-G. M. Zulpukarov
AU  - G. G. Malinetskii
AU  - A. V. Podlazov
TI  - Using the channels and jokers method for the Rosenzweig--Macarthur system dynamics description
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 3
EP  - 15
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_6_a0/
LA  - ru
ID  - MM_2007_19_6_a0
ER  - 
%0 Journal Article
%A M.-G. M. Zulpukarov
%A G. G. Malinetskii
%A A. V. Podlazov
%T Using the channels and jokers method for the Rosenzweig--Macarthur system dynamics description
%J Matematičeskoe modelirovanie
%D 2007
%P 3-15
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_6_a0/
%G ru
%F MM_2007_19_6_a0
M.-G. M. Zulpukarov; G. G. Malinetskii; A. V. Podlazov. Using the channels and jokers method for the Rosenzweig--Macarthur system dynamics description. Matematičeskoe modelirovanie, Tome 19 (2007) no. 6, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2007_19_6_a0/

[1] G. G. Malinetskii, A. B. Potapov, Sovremennye problemy nelineinoi dinamiki, URSS, M., 2002

[2] A. N. Tikhonov, O sistemakh differentsialnykh uravnenii, soderzhaschikh parametry, Izbrannye trudy A. N. Tikhonova, MAKS Press, M., 2001

[3] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[4] A. N. Tikhonov, A. B. Vasileva, A. G. Sveshnikov, Differentsialnye uravneniya, Nauka, M., 1980 | MR

[5] E. F. Mischenko, N. Kh. Rozov, Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[6] M.-G. M. Zulpukarov, G. G. Malinetskii, A. V. Podlazov, preprint No 21, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M.

[7] G. Yu. Riznichenko, Lektsii po matematicheskim modelyam v biologii, Chast 1, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2002

[8] Deng, “Food chain chaos due to junction-fold point”, Chaos, 11:3 (2001) | DOI

[9] B. Deng, G. Hines, “Food chain chaos due to Shilnikov's orbit”, Chaos, 12:3 (2002) | DOI | MR

[10] B. Deng, G. Hines, “Food chain chaos due to transcritical point”, Chaos, 13:2 (2003) | DOI | MR

[11] B. Deng, “Food chain chaos with canard explosion”, Chaos, 14:4 (2004) | DOI | MR

[12] M.-G. M. Zulpukarov, G. G. Malinetskii, Shilnikovskii khaos v sisteme Rozentsveiga–Makartura, preprint No 45, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M., 2006

[13] L. P. Shilnikov, “Ob odnom sluchae suschestvovaniya schëtnogo mnozhestva periodicheskikh dvizhenii”, Doklady AN SSSR, 160:3 (1965)

[14] L. P. Shilnikov, “O suschestvovanii schëtnogo mnozhestva periodicheskikh dvizhenii v chetyrëkhmernom prostranstve v rasshirennoi okrestnosti sedlo-fokusa”, Doklady AN SSSR, 172:1 (1967) | MR

[15] L. P. Shilnikov, “K voprosu o strukture rasshirennoi okrestnosti grubogo sostoyaniya ravnovesiya tipa sedlo-fokus”, Matem. sb., 81(123):1 (1970), 92–103

[16] S. P. Kuznetsov, Dinamicheskii khaos, Fizmatgiz, M., 2001

[17] Dzh. Gukenkheimer, P. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, URSS, M., 2002

[18] L. V. Belaichuk, G. G. Malinetskii, Prodelki dzhokerov na odnomernykh otobrazheniyakh, prepr. No 24, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M., 1997

[19] B. Rossetto, T. Lenzini, S. Ramdani, G. Suchey, “Slow-Fast Autonomous Dynamical Systems”, International Journal of Bifurcation and Chaos, 8:11 (1998) | DOI | MR | Zbl

[20] S. Ramdani, B. Rossetto, L. O. Chua, R. Lozi, “Slow Manifolds of Some Chaotic Systems with Applications to Laser Systems”, International Journal of Bifurcation and Chaos, 10:12 (2000) | DOI | MR

[21] B. Rossetto, J.-M. Ginoux, Singular Manifolds and Attractors Structure in Predator-Prey models. Universite du Sud Toulon-Var, France

[22] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985 | MR | Zbl

[23] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR | Zbl

[24] V. E. Sokolov (red.), Zhizn zhivotnykh, Prosveschenie, M., 1988 | Zbl