Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_5_a7, author = {A. S. Malkov}, title = {Mathematical modeling of trade flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {93--104}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_5_a7/} }
A. S. Malkov. Mathematical modeling of trade flows. Matematičeskoe modelirovanie, Tome 19 (2007) no. 5, pp. 93-104. http://geodesic.mathdoc.fr/item/MM_2007_19_5_a7/
[1] Krasnoschekov P. S., Petrov A. A., Printsipy postroeniya modelei, Izd-vo MGU, M., 1983 | Zbl
[2] Mikhailov A. P., “Matematicheskoe raspredelenie vlasti v ierarkhicheskikh strukturakh”, Matem. modelirovanie, 6:6 (1994), 108–138
[3] Beckmann M. J., “A continuous model of transportation”, Econometrica, 20:4 (1952), 643–660 | DOI | MR | Zbl
[4] Kantorovich L. V., “Ob odnoi probleme Monzha”, Uspekhi mat. nauk, 3:2 (1948), 225–226
[5] Feldman M., McCann R. J., “Uniqueness and transport density in Monge's mass transportation problem”, Calc. Var., 15 (2002), 81–113 | DOI | MR | Zbl
[6] Beckmann M. J., Puu T., Spatial Economics: Density, Potential and Flow., North-Holland, Ansterdam, 1985 | MR
[7] B. B. Mandelbrot, “How Long is the Coast of Great Britain, Statistical Self Similarity and Fractional Dimension”, Science, 155 (1967), 636–638 | DOI | MR