Mathematical modeling of trade flows
Matematičeskoe modelirovanie, Tome 19 (2007) no. 5, pp. 93-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns some aspects of mathematical modeling of trade flows in historical processes. A model describing trade flows formation under given geographical conditions is discussed. A method of transport conductivity evaluation using GIS-data is proposed.
@article{MM_2007_19_5_a7,
     author = {A. S. Malkov},
     title = {Mathematical modeling of trade flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_5_a7/}
}
TY  - JOUR
AU  - A. S. Malkov
TI  - Mathematical modeling of trade flows
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 93
EP  - 104
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_5_a7/
LA  - ru
ID  - MM_2007_19_5_a7
ER  - 
%0 Journal Article
%A A. S. Malkov
%T Mathematical modeling of trade flows
%J Matematičeskoe modelirovanie
%D 2007
%P 93-104
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_5_a7/
%G ru
%F MM_2007_19_5_a7
A. S. Malkov. Mathematical modeling of trade flows. Matematičeskoe modelirovanie, Tome 19 (2007) no. 5, pp. 93-104. http://geodesic.mathdoc.fr/item/MM_2007_19_5_a7/

[1] Krasnoschekov P. S., Petrov A. A., Printsipy postroeniya modelei, Izd-vo MGU, M., 1983 | Zbl

[2] Mikhailov A. P., “Matematicheskoe raspredelenie vlasti v ierarkhicheskikh strukturakh”, Matem. modelirovanie, 6:6 (1994), 108–138

[3] Beckmann M. J., “A continuous model of transportation”, Econometrica, 20:4 (1952), 643–660 | DOI | MR | Zbl

[4] Kantorovich L. V., “Ob odnoi probleme Monzha”, Uspekhi mat. nauk, 3:2 (1948), 225–226

[5] Feldman M., McCann R. J., “Uniqueness and transport density in Monge's mass transportation problem”, Calc. Var., 15 (2002), 81–113 | DOI | MR | Zbl

[6] Beckmann M. J., Puu T., Spatial Economics: Density, Potential and Flow., North-Holland, Ansterdam, 1985 | MR

[7] B. B. Mandelbrot, “How Long is the Coast of Great Britain, Statistical Self Similarity and Fractional Dimension”, Science, 155 (1967), 636–638 | DOI | MR