Convex structures in ecological models
Matematičeskoe modelirovanie, Tome 19 (2007) no. 4, pp. 90-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

For some processes of several ecological models (migration, competition and material cycles) are represented useful geometrical interpretations. The convex structures and extreme points are established as the building elements for special models. The effective methods for special models analysis are demonstrated.
@article{MM_2007_19_4_a7,
     author = {V. G. Il'ichev},
     title = {Convex structures in ecological models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {90--102},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_4_a7/}
}
TY  - JOUR
AU  - V. G. Il'ichev
TI  - Convex structures in ecological models
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 90
EP  - 102
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_4_a7/
LA  - ru
ID  - MM_2007_19_4_a7
ER  - 
%0 Journal Article
%A V. G. Il'ichev
%T Convex structures in ecological models
%J Matematičeskoe modelirovanie
%D 2007
%P 90-102
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_4_a7/
%G ru
%F MM_2007_19_4_a7
V. G. Il'ichev. Convex structures in ecological models. Matematičeskoe modelirovanie, Tome 19 (2007) no. 4, pp. 90-102. http://geodesic.mathdoc.fr/item/MM_2007_19_4_a7/

[1] Aizatullin T. A., Shamardina I. P., “Matematicheskoe modelirovanie ekosistem kontinentalnykh vodotokov i vodoemov”, Obschaya ekologiya, biotseonologiya, gidrobiologiya, Itogi nauki i tekhniki, 5, 1980, 154–228

[2] Roitenberg Ya. N., Avtomaticheskoe upravlenie, Nauka, M., 1971 | MR | Zbl

[3] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR | Zbl

[4] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968

[5] Pechurkin N. S., Populyatsionnaya mikrobiologiya, Nauka, Novosibirsk, 1978

[6] Ilichev V. G., “Ustoichivye sistemy s dvumya zapazdyvaniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 1997, no. 2, 34–41 | MR

[7] Ilichev V. G., “Struktura semeistva obratnykh svyazei i ustoichivost ekologicheskikh sistem”, Avtomatika i telemekhanika, 1986, no. 12, 66–76 | MR

[8] Armstrong R. A., Mc. Gehee R., “Coexistence of species competing for shared resources”, Theor. Pop. Biol., 9:3 (1976), 317–328 | DOI | MR | Zbl

[9] Pontryagin L. S., Printsip maksimuma v optimalnom upravlenii, Nauka, M., 1989 | MR | Zbl

[10] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[11] Ilichev V. G., “Delta-funktsii i teoriya biologicheskoi konkurentsii v peremennoi srede”, Avtomatika i Telemekhanika, 1996, no. 11, 115–127 | MR

[12] Nedorezov L. V., Utyupin Yu. V., “Diskretno-nepreryvnaya model dinamiki chislennosti dvupoloi populyatsii”, Sib. matem. zhurn., 44:3 (2003), 650–659 | MR | Zbl

[13] Roberts F. S., Diskretnye matematicheskie modeli s prilozheniem k sotsialnym, biologicheskim i ekologicheskim zadacham, Nauka, M., 1986 | MR | Zbl

[14] Ilichev V. G., “O tekhnologii postroeniya imitatsionnykh modelei ekologicheskikh sistem. Mekhanizmy adaptatsii”, Matem. modelirovanie, 4:3 (1992), 11–19 | MR

[15] Ilichev V. G., “Mekhanizmy adaptatsii parametrov v modelyakh ekologii”, Matem. modelirovanie, 16:2 (2004), 54–68 | MR

[16] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR