Parallel-vectorial algorithm of molecular dynamics
Matematičeskoe modelirovanie, Tome 19 (2007) no. 4, pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

A performance increasing method for programs of molecular dynamics is discussed. The method essence is full use of hardware resources of modern processors by the example of Pentium 4 Hyper Threading and Athlon 64 X2. The first one is seen by operational system as two virtual processors, and the second one has two real processors at one microchip. In both cases as pair of virtual processors as pair of real processors have common memory and hardware expansion in the form of multimedia SSE-registers or vector registers. Due to this circumstance any computation may be paralleled at first between two processors, and next it may be vectorized in SSE-registers of each processor in four streams more. As a result a number of simultaneously performed steps of original algorithm becomes equal to eight, which needed computer cluster with special software till recently. C++ text of parallel-vectorial algorithm is described and its relative performance is investigated as a function of stream number for both kinds of processors.
@article{MM_2007_19_4_a5,
     author = {E. M. Pestryaev},
     title = {Parallel-vectorial algorithm of molecular dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_4_a5/}
}
TY  - JOUR
AU  - E. M. Pestryaev
TI  - Parallel-vectorial algorithm of molecular dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 62
EP  - 70
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_4_a5/
LA  - ru
ID  - MM_2007_19_4_a5
ER  - 
%0 Journal Article
%A E. M. Pestryaev
%T Parallel-vectorial algorithm of molecular dynamics
%J Matematičeskoe modelirovanie
%D 2007
%P 62-70
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_4_a5/
%G ru
%F MM_2007_19_4_a5
E. M. Pestryaev. Parallel-vectorial algorithm of molecular dynamics. Matematičeskoe modelirovanie, Tome 19 (2007) no. 4, pp. 62-70. http://geodesic.mathdoc.fr/item/MM_2007_19_4_a5/

[1] Guk M., Yurov V., Protsessory Pentium 4, Athlon i Duron, Piter, SPb., 2001

[2] IntelR C++ Compiler for Windows. Systems User's Guide, Copyright c 1996–2003 Intel Corporation

[3] Pestryaev E. M, “88E-algoritm molekulyarnoi dinamiki”, Matematicheskoe modelirovanie, 15:12 (2003), 118–128 | Zbl

[4] Baranovskii V., “Dvukh'yadernye nastupayut”, Kompyutery+programmy, 2005, no. 10, 20–25

[5] Akimov V. N., Gorbachev I. I., Popov V. V., “Reshenie zadach mnogokomponentnoi diffuzii s pomoschyu parallelnogo algoritma matrichnoi progonki”, Matematicheskoe modelirovanie, 17:9 (2005), 85–92 | Zbl

[6] Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E, Chipot C., Skeel R. D., Kale L., Schulten K., “Scalable molecular dynamics with NAMD”, J. Comput. Chem., 26:16 (2005), 1781–1802 | DOI

[7] Frenkel D., Smit B., Understanding molecular simulation, 2nd. edition, Academic Press, San Diego-San Francisco-New York-Boston-London-Tokio, 2002

[8] Pirogov V. Yu., Assembler dlya Windows, 3-e izd., BKhV-Peterburg, SPb., 2005

[9] Arkhangelskii A. Ya., Programmirovanie v C++Builder 6, Izd-vo “BINOM”, M., 2002

[10] Kholzner S., Visual C++ 6. Uchebnyi kurs, Piter, SPb., 2005

[11] Kheerman D. V., Metody kompyuternogo eksperimenta v teoreticheskoi fizike, ed. S. A. Akhmanov, Nauka, Gl. red. fiz.-mat. lit., M., 1990

[12] AMD AthlonT x86 Processor Optimization Guide, Advanced Micro Devices, 2002