The numerical simulation for quasi-stationary electromagnetic fields in multiply connected regions and regions with time-changing boundaries
Matematičeskoe modelirovanie, Tome 19 (2007) no. 4, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space-homogeneous models and algorithms for quasi-stationary electromagnetic fields description has been worked out. Time-changing conducting and nonconducting subregions has been taken into consideration. The preferences of proposed algorithms application were demonstrated. The solution stability of difference task for different simulation ways has been studied. The algorithms for unique solution obtaining of quasi-stationary Maxwell equations in three-dimensional region with multiply connected conducting and nonconducting subregions have been worked out.
@article{MM_2007_19_4_a0,
     author = {M. P. Galanin and Yu. P. Popov and S. S. Urazov},
     title = {The numerical simulation for quasi-stationary electromagnetic fields in multiply connected regions and regions with time-changing boundaries},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_4_a0/}
}
TY  - JOUR
AU  - M. P. Galanin
AU  - Yu. P. Popov
AU  - S. S. Urazov
TI  - The numerical simulation for quasi-stationary electromagnetic fields in multiply connected regions and regions with time-changing boundaries
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 3
EP  - 18
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_4_a0/
LA  - ru
ID  - MM_2007_19_4_a0
ER  - 
%0 Journal Article
%A M. P. Galanin
%A Yu. P. Popov
%A S. S. Urazov
%T The numerical simulation for quasi-stationary electromagnetic fields in multiply connected regions and regions with time-changing boundaries
%J Matematičeskoe modelirovanie
%D 2007
%P 3-18
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_4_a0/
%G ru
%F MM_2007_19_4_a0
M. P. Galanin; Yu. P. Popov; S. S. Urazov. The numerical simulation for quasi-stationary electromagnetic fields in multiply connected regions and regions with time-changing boundaries. Matematičeskoe modelirovanie, Tome 19 (2007) no. 4, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2007_19_4_a0/

[1] M. P. Galanin, Yu. P. Popov, Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh: Matematicheskoe modelirovanie, Nauka, Fizmatlit, M., 1995 | MR | Zbl

[2] M. F. Zhukov (red.), Materialy I Vsesoyuznogo seminara po dinamike silnotochnogo dugovogo razryada v magnitnom pole (Novosibirsk, 10–13 apr. 1990 g.), Izd. Inst. Teplofiziki SO AN SSSR, Novosibirsk, 1990 | Zbl

[3] V. E. Nakoryakov (red.), Materialy II Vsesoyuznogo seminara po dinamike silnotochnogo dugovogo razryada v magnitnom pole (Novosibirsk, 4–6 dekabrya 1991 g.), Izd. Inst. Teplofiziki SO RAN, Novosibirsk, 1992

[4] M. P. Galanin, A. P. Pototskii, Yu. P. Popov, S. S. Khramtsovskii, “Chislennoe modelirovanie prostranstvenno trekhmernykh yavlenii pri elektromagnitnom uskorenii provodyaschikh makrotel”, Matematicheskoe modelirovanie, 11:8 (1999), 3–22

[5] M. P. Galanin, S. S. Khramtsovskii, Organizatsiya rascheta trekhmernykh kvazistatsionarnykh elektromagnitnykh polei v oblastyakh so slozhnoi geometriei provodnikov i dielektrikov, prepr. No 42, IPM im. M. V. Keldysha RAN, M., 1999

[6] M. P. Galanin, A. P. Pototskii, S. S. Urazov, “Modelirovanie erozii metallicheskogo kontakta v uskoritele tipa relsotron”, Vestnik MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2004, no. 4(15), 81–97

[7] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[8] D. S. Kershaw, “The incomplete Cholessky–Conjugate Gradient Method for the iterative solution of system of a linear equations”, J. Comput. Phys., 26 (1978), 43–65 | DOI | MR | Zbl

[9] A. Dzhordzh, Dzh. Lyu, Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR

[10] L. M. Degtyarev, A. P. Favorskii, “Potokovyi variant metoda progonki dlya raznostnykh zadach s silno menyayuschimisya koeffitsientami”, ZhVM i MF, 9:2 (1969), 211–218 | Zbl

[11] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoi dinamiki, Editorial URSS, M., 2004

[12] D. K. Fadeev, V. N. Fadeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR

[13] Yu. I. Belyakov, A. P. Pototskii, V. V. Savichev, Yu. A. Khalimullin, “Issledovanie erozii metallicheskikh kontaktov v relsotronnom uskoritele”, Vestnik MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 1999, no. 2, 46–60

[14] M. P. Galanin, S. S. Urazov, Chislennoe modelirovanie kachestvennykh osobennostei raspredelenii trekhmernykh polei v neodnorodnykh podoblastyakh elektrodinamicheskogo uskoritelya, prepr. No 27, IPM im. M. V. Keldysha RAN, M., 2004

[15] J. H. Price, H. D. Yun et al., “Discarding Armature and Barrel Optimization for a Cannon Caliber Electromagnetic Launcher System”, IEEE Transactions on Magnetics, 31:1 (1995), 225–230 | DOI

[16] V. V. Nikolskii, Variatsionnye metody dlya vnutrennikh zadach elektrodinamiki, Nauka, M., 1967

[17] E. B. Bykhovskii, N. V. Smirnov, “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Tr. MIAN SSSR, 59, 1960, 5–36 | MR

[18] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[19] A. N. Kanatnikov, A. P. Krischenko, Lineinaya algebra, Izd-vo MGTU im. N. E. Baumana, M., 2002