Study of diffusive processes on metal surfaces with use of self-learning kinetic Monte-Carlo method
Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 116-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

New method of Self-learning Kinetic Monte-Carlo for simulations of diffusion processes on metal surfaces is described. Novelty of the method consists of the possibility for expanding of the list of eligible atomic displacements during simulation run (on fly). It makes the model more realistic and simultaneously provides considerable speed up of simulations. EAM potentials are used for modeling interatomic forces. Power of the method is illustrated by example study of diffusion driven kinetics on Cu(111) surface.
@article{MM_2007_19_3_a9,
     author = {O. S. Trushin and P. A. Vikulov and A. Karim and A. Kara and T. S. Rahman},
     title = {Study of diffusive processes on metal surfaces with use of self-learning kinetic {Monte-Carlo} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_3_a9/}
}
TY  - JOUR
AU  - O. S. Trushin
AU  - P. A. Vikulov
AU  - A. Karim
AU  - A. Kara
AU  - T. S. Rahman
TI  - Study of diffusive processes on metal surfaces with use of self-learning kinetic Monte-Carlo method
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 116
EP  - 126
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_3_a9/
LA  - ru
ID  - MM_2007_19_3_a9
ER  - 
%0 Journal Article
%A O. S. Trushin
%A P. A. Vikulov
%A A. Karim
%A A. Kara
%A T. S. Rahman
%T Study of diffusive processes on metal surfaces with use of self-learning kinetic Monte-Carlo method
%J Matematičeskoe modelirovanie
%D 2007
%P 116-126
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_3_a9/
%G ru
%F MM_2007_19_3_a9
O. S. Trushin; P. A. Vikulov; A. Karim; A. Kara; T. S. Rahman. Study of diffusive processes on metal surfaces with use of self-learning kinetic Monte-Carlo method. Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 116-126. http://geodesic.mathdoc.fr/item/MM_2007_19_3_a9/

[1] A. F. Voter, F. Montalenti, T. C. Germann, “Extending the Time Scale in Atomistic Simulation of Materials”, Annu. Rev. Mater. Res., 32 (2002), 321 | DOI

[2] O. S. Trushin, V. F. Bochkarev, V. V. Naumov, “Modelirovanie protsessov epitaksialnogo rosta plenok v usloviyakh ionno-plazmennogo napyleniya”, Mikroelektronika, 29:4 (2000), 296–309

[3] M. C. Payne et al., “Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients”, Reviews of Modern Physics, 64:4 (1992), 1045 | DOI

[4] S. M. Foiles, M. I. Baskes, M. S. Daw, “Embedded-atom-method functions for fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Phys. Rev. B, 33 (1986), 7983–7991 | DOI

[5] A. Voter, “Classically exact over layer dynamics: Diffusion of rhodium clusters on Rh(100)”, Phys. Rev. B, 34:10 (1986), 6819 | DOI

[6] L. Bitar et al., “Mechanism for diffusion of nanostructures and mesoscopic objects on surfaces”, Surface Science, 339 (1995), 221 | DOI

[7] P. Salo, J. Hirvonen, I. T. Koponen, O. S. Trushin, J. Heinonen, T. Ala-Nissila, “Role of concerted atomic movements on the diffusion of small islands on fcc.100. metal surfaces”, Phys. Rev. B, 64 (2001), 161405 | DOI

[8] J. C. Hamilton, M. S. Daw, S. M. Foiles, “Dislocation mechanism for island diffusion on fcc(111) surfaces”, Phys. Rev. Lett., 74 (1995), 2760 | DOI

[9] A. F. Voter, “Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events”, Phys. Rev. Lett., 78 (199), 3908 | DOI

[10] A. F. Voter, “Parallel replica method for dynamics of infrequent events”, Phys. Rev. B, 57:22 (1998), R13985–R13988 | DOI

[11] M. S. Sorensen, A. F. Voter, “Temperature-accelerated dynamics for simulation of infrequent events”, J. Chem. Phys., 112 (2000), 9599 | DOI

[12] G. Henkelman, H. Jonsson, “A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives”, J. Chem. Phys., 111 (1999), 7010 | DOI

[13] Graeme Henkelman, Hannes Jonsson, “Multiple Time Scale Simulations of Metal Crystal Growth Reveal the Importance of Multiatom Surface Processes”, Phys. Rev. Lett., 90:11 (2003), 116101 | DOI

[14] O. Trushin, A. Karim, A. Kara, T.S. Rahman, “Self-learning kinetic Monte-Carlo method: Application to Cu(111)”, Phys, Rev. B, 72 (2005), 115401 | DOI

[15] V. Shtiller, Uravnenie Arreniusa i neravnevesnaya kinetika, Mir, M., 2000

[16] Hannes Jonsson, Greg Mills, W. Karsten, “Jacobsen Nudged elastic band method for finding minimum energy paths of transitions”, Classical and Quantum Dynamics in Condensed Phase Simulations, eds. B. J. Berne et al., World Scientific, Singapore, 1998

[17] Lindsey J. Munro, J. David, “Wales Defect migration in crystalline silicon”, Phys. Rev. B, 59 (1999), 3969 | DOI

[18] O. S. Trushin, M. Kotrla, F. Maca, “Energy barriers on stepped Ir/Ir(111) surface: a molecular statics calculation”, Surface Science, 389:1–3 (1997), 55 | DOI

[19] M. Karimi, T. Tomkowski, G. Vidali, O. Biham, “Diffusion of Cu on Cu surfaces”, Phys. Rev. B, 52 (1995), 5364–5374 | DOI

[20] M. Giesen, “Step and island dynamics at solid/vacuum and solid/liquid interfaces”, Progress in Surface Science, 69 (2001), 1–153 | DOI

[21] D. C. Schloser, K. Morgenstein, L. K. Verheij et al., “Kinetics of island diffusion on Cu(111) and Ag(111) studied with variable-temperature STM”, Surface Science, 465 (2000), 19–39 | DOI

[22] A. Karim, A. N. Al-Rawi, A. Kara, T. S. Rahman, O. Trushin, T. Ala-Nissila, “Diffusion of small two-dimensional Cu islands on Cu(111) by a Self-Learning Kinetic Monte Carlo method”, Phys. Rev. B, 73 (2006), 165411 | DOI