Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_3_a7, author = {I. L. Kirilyuk}, title = {Tracking of contact borders in {TVD-schemes} of hydrodynamics using the level set}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {94--104}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_3_a7/} }
I. L. Kirilyuk. Tracking of contact borders in TVD-schemes of hydrodynamics using the level set. Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 94-104. http://geodesic.mathdoc.fr/item/MM_2007_19_3_a7/
[1] N. G. Bourago, V. N. Kukudzhanov, A Survey on Contact Algorithms (extended version), Report of the Institute for Problems in Mechanics of RAS, Moscow, 2003
[2] S. Osher, J. A. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations”, J. Comput. Phys., 79:12 (1988) | MR | Zbl
[3] Stanley Osher, Ronald P. Fedkiw, “Level set methods: an overview and some recent results”, J. Comput. Phys., 169 (2001), 463–502 | DOI | MR | Zbl
[4] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorskii, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlya zadachi o razvitii neustoichivosti Rikhtmaiera–Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15 | Zbl
[5] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1:5 (1989), 95–120 | MR | Zbl
[6] Yu. A. Bondarenko, Yu. V. Yanilkin, “Raschët termodinamicheskikh parametrov smeshannykh yacheek v gazovoi dinamike”, Matematicheskoe modelirovanie, 14:6 (2002), 63 | MR | Zbl
[7] S. M. Bakhrakh, V. F. Spiridonov, “Metod kontsentratsii rascheta nestatsionarnykh techenii sploshnoi sredy”, Trudy mezhdunarodnoi konferentsii RDAMM-2001, T. 6, Ch. 2, spets. vypusk, 2001
[8] J. D. Ramshaw, J. A. Trapp, “A numerical technique for low-speed homogeneous two-phase flow with sharp interfaces”, J. Comput. Phys., 21 (1976), 438–453 | DOI | MR | Zbl
[9] Mark Sussman, Emad Fatemi, “An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow”, SIAM J. Sci. Comput., 20:4, 1165–1191 | MR | Zbl
[10] R. Fedkiw, T. Aslam, B. Merriman, S. Osher, “A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)”, J. Comput. Phys., 152(2) (1999), 457 | DOI | MR | Zbl
[11] Rachel Caiden, Ronald P. Fedkiw, Chris Andersch, “A numerical method for two phase flow consisting of separate compressible and incompressible regions”, J. Comput. Phys., 166:1, 1–27 | Zbl
[12] James Glimm, Xiao Lin Li, Yingjie Liu and Ning Zhao, “Conservative Front Tracking and Level Set Algorithms”, Proc. Natl. Acad. Sci. USA, 98:25 (2001), 14198–14201 | DOI | MR | Zbl
[13] D. Nguyen, F. Gibou, R. Fedkiw, “A Fully Conservative Ghost Fluid Method and Stiff Detonation Waves”, 12th Int. Detonation Symposium, San Diego, CA, 2002
[14] Razvitie ekonomichnykh adaptivnykh metodov rascheta trekhmernykh vikhrevykh techenii v mnogokomponentnykh sredakh, Nauchno-tekhnicheskii otchët po proektu No 1495 MNTTs