An optimization model of apoptosis: determination of kinetic constants
Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Apoptosis is a distinct mechanism of cell death. The result of apoptosis is elimination of invalid cells. The apoptosis system is a set of cytoplasmic proteins. After apoptosis induction the cascade of enzyme reactions is triggered. Once activated procaspases form active enzymes ? caspases. Apoptosis targets are destructed by executioner caspases. Apoptosis is induced by various stimuli (death receptor ligands, granzyme B, and many others antineoplastic agents). Granzyme B activates procaspases and direct cleaves apoptotic targets. The main purpose of this work is to study dynamics of caspase activation and target cleavage in granzyme B-induced apoptosis. In particular, the effects of changing granzyme B concentrations on the dynamics of caspase activation are studied using mathematical modeling technique. A major difficulty in the problem solving is the fact that most of the kinetic constants for biochemical reactions are lacking. Therefore, the other purpose of this work is to determine unknown kinetic constant using optimization approach. The results of this study enable us to estimate unknown kinetic constants. In addition, the peculiarities of the apoptosis dynamics can be studied qualitatively. A prolonged lag time between apoptosis initiation and a significant increase in caspase concentrations is predicted. With increasing granzyme B concentrations, the lag time is shortened. This model provides a new insight into caspase activation process that is critical for immune cell-mediated lyses of immunological targets.
@article{MM_2007_19_3_a4,
     author = {A. V. Sintsov and M. V. Iakobovski and S. H. Kaufmann and M. A. Khanin},
     title = {An optimization model of apoptosis: determination of kinetic constants},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/}
}
TY  - JOUR
AU  - A. V. Sintsov
AU  - M. V. Iakobovski
AU  - S. H. Kaufmann
AU  - M. A. Khanin
TI  - An optimization model of apoptosis: determination of kinetic constants
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 59
EP  - 73
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/
LA  - ru
ID  - MM_2007_19_3_a4
ER  - 
%0 Journal Article
%A A. V. Sintsov
%A M. V. Iakobovski
%A S. H. Kaufmann
%A M. A. Khanin
%T An optimization model of apoptosis: determination of kinetic constants
%J Matematičeskoe modelirovanie
%D 2007
%P 59-73
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/
%G ru
%F MM_2007_19_3_a4
A. V. Sintsov; M. V. Iakobovski; S. H. Kaufmann; M. A. Khanin. An optimization model of apoptosis: determination of kinetic constants. Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 59-73. http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/

[1] M. Barry, R. C. Bleackley, “Cytotoxic T lymphocytes: all roads lead to death”, Nature Rev. Immunology, 2 (2002), 401–409

[2] J. Lieberman, “The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal”, Nature Rev. Immunology, 3 (2003), 361–370 | DOI

[3] S. M. Raja, B. Wang, M Dantuluri, U. R. Desai, B. Demeler, K. Spiegel, S. S. Metkar, C. J. Froelich J., “Cyto-toxic Cell Granule-mediated Apoptosis”, Biol. Chem., 277 (2002), 49523–49530 | DOI

[4] J. A. Heibein, M. Barry, B. Motyka, R. C. Bleackley, “Granzyme B-induced loss of mitochondrial inner membrane potential and cytochrome $c$ release are caspase independent”, J. Immunology, 163 (1999), 4683–4693

[5] C. Scaffidi, S. Fulda, A. Srinivasan, C. Friesen, K. J. Tomaselli, K. M. Debatin, P. H. Krammer, M. E. Peter, “Two CD95 (APO-1/Fas) signaling pathways”, EMBO J., 17 (1998), 1675–1687 | DOI

[6] K. V. Tyurin, M. A. Khanin, “Optimalnost fermentativnykh fiziologicheskikh sistem”, Izv. Akad. Na-uk. Ser. Biol., 6 (2000), 713–720

[7] M. A. Khanin, A. N. Lobanov, S. H. Kaufmann, “Apoptosis: an optimization approach”, Comput. Biol. Med., 34 (2004), 449–459 | DOI

[8] K. V. Tyurin, M. A. Khanin, “Optimality principle and determination of kinetic constants for biochemical reactions”, Math. Med. Biol., 22 (2005), 1–14 | DOI | Zbl

[9] M. Fussenegger, J. E. Bailey, J. Varner, “A mathematical model of caspase function in apoptosis”, Nat. Biotechnol., 18 (2000), 768–774 | DOI

[10] M. Bentele, I. Lavrik, M. Ulrich, S. Stosser, D. W. Heermann, H. Kalthoff, P. H. Krammer, R. Eils, “Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis”, J. Cell Biol., 166 (2004), 839–851 | DOI

[11] T. Eissing, H. Conzelmann, E. D. Gilles, F. Allgower, E. Bullinger, P. Scheurich, “Bistability analyses of a caspase activation model for receptor-induced apoptosis”, J. Biol. Chem., 279 (2004), 36892–36897 | DOI

[12] W. R. Hess, “Das prinzip des kleinsten kraftverbrauches im dienste hamodynamischer forschung”, Arch. Anat. Physiol., 2 (1914), 1–62 | MR

[13] W. C. Earnshow, L. M. Martins, S. H. Kaufmann, “Mammalian caspases: structure, activation, substrates and functions during apoptosis”, Annu. Rev. Biochem., 68 (1999), 383–424 | DOI

[14] F. Andrade, S. Roy, D. Nicholson, N. Thornberry, A. Rosen, L. Casciola-Rosen, “Granzyme B directly and ef-ficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis”, Immunity, 8 (1998), 451–460 | DOI

[15] V. Cowling, J. Downward, “Caspase-6 is the direct activator of caspase-8 in the cytochrome $c$-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain”, Cell Death Differ., 9 (2002), 1046–1056 | DOI

[16] D. Sohn, K. Schulze-Osthoff, R. U. Janicke, “Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis”, J. Biol. Chem., 280 (2005), 5267–5273 | DOI

[17] Q. Deveraux, R. Takahashi, G. S. Salvesen, J. C. Reed, “$\mathrm{X}$-linked IAP is a direct inhibitor of cell death proteases”, Nature, 388 (1997), 300–303 | DOI

[18] N. Roy, Q. L. Deveraux, R. Takahashi, G. S. Salvesen, J. C. Reed, “The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases”, EMBO J., 16 (1997), 6914–6925 | DOI

[19] G. S. Salvesen, C. S. Duckett, “IAP proteins: blocking the road to death's door”, Mol. Cell. Biol., 3 (2002), 401–410

[20] H. R. Stennicke, J. M. Jurgensmeier, H. Shin, Q. Deveraux, B. B. Wolf, X. Yang, Q. Zhou, H. M. Ellerby, L. M. Ellerby, D. Bredesen, D. R. Green, J. C. Reed, C. J. Froelich, G. S. Salvesen, “Pro-caspase-3 is a major physiologic target of caspase-8”, J. Biol. Chem., 273 (1998), 27084–27090 | DOI

[21] X. Yang, H. R. Stennicke, B. Wang, D. R. Green, R. U. Janicke, A. Srinivasan, P. Seth, G. S. Salvesen, C. J. Froelich, “Granzyme B mimics apical caspases. Description of a unified pathway for trans-activation of exe-cutioner caspase-3 and-7”, J. Biol. Chem., 273 (1998), 34278–34283 | DOI

[22] K. V. Tyurin, M. A. Khanin, “Optimality principle and determination of kinetic constants for biochemical reactions”, Math. Med. Biol., 22 (2005), 1–14 | DOI | Zbl

[23] S. S. Metkar, B. Wang, M. L. Ebbs, J. H. Kim, Y. J. Lee, S. M. Raja, C. J. Froelich, “Granzyme B activates pro-caspase-3 which signals a mitochondrial amplification loop for maximal apoptosis”, J. Cell Biol., 160 (2003), 875–885 | DOI

[24] G. MacDonald, L. Shi, C. Vande Velde, J. Lieberman, A. H. Greenberg, “Mitochondria-dependent and independent regulation of Granzyme B-induced apoptosis”, J. Exp. Med., 189 (1999), 131–144 | DOI

[25] M. J. Pinkoski, N. J. Waterhouse, J. A. Heibein, B. B. Wolf, T. Kuwana, J. C. Goldstein, D. D. Newmeyer, R. C. Bleackley, D. R. Green, “Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway”, J. Biol Chem., 276 (2001), 12060–12067 | DOI

[26] L. Casciola-Rosen, F. Andrade, D. Ulanet, W. B. Wong, A. Rosen, “Cleavage by granzyme B is strongly pre-dictive of autoantigen status: implications for initiation of autoimmunity”, J. Exp. Med., 190 (1999), 815–826 | DOI

[27] E. Sharif-Askari, A. Alam, E. Rheaume, P. J. Beresford, C. Scotto, K. Sharma, D. Lee, W. E. DeWolf, M. E. Nuttall, J. Lieberman, R. P. Sekaly, “Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation”, EMBO J., 20 (2001), 3101–3113 | DOI

[28] F. G. Gervais, N. A. Thornberry, S. C. Ruffolo, D. W. Nicholson, S. Roy, “Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide”, J. Biol. Chem., 273 (1998), 17102–17108 | DOI

[29] J. A. Mahoney, J. A. Odin, S. M. White, D. Shaffer, A. Koff, L. Casciola-Rosen, A. Rosen, “The human homologue of the yeast polyubiquitination factor Ufd2p is cleaved by caspase 6 and granzyme B during apoptosis”, Biochem. J., 361 (2002), 587–595 | DOI

[30] H. R. Stennicke, G. S. Salvesen, “Caspases – controlling intracellular signals by protease zymogen activation”, Biochim. Biophys. Acta, 1477 (2000), 299–306

[31] M. Mancini, C. E. Machamer, S. Roy, D. W. Nicholson, N. A. Thornberry, L. A. Casciola-Rosen, A. Rosen, “Cas-pase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis”, J. Cell Biol., 149 (2000), 603–612 | DOI

[32] L. A. Casciola-Rosen, D. W. Nicholson, T. Chong, K. R. Rowan, N. A. Thornberry, D. K. Miller, A. Rosen, “Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death”, J. Exp. Med., 183 (1996), 1957–1964 | DOI

[33] D. McIlroy, H. Sakahira, R. V. Talanian, S. Nagata, “Involvement of caspase 3-activated DNase in internu-cleosomal DNA cleavage induced by diverse apoptotic stimuli”, Oncogene, 18 (1999), 4401–4408 | DOI

[34] H. R. Stennicke, M. Renatus, M. Meldal, G. S. Salvesen, “Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8”, Biochem. J., 350 (2000), 563–568 | DOI

[35] N. Margolin, S. A. Raybuck, K. P. Wilson, W. Chen, T. Fox, Y. Gu, D. J. Livingston, “Substrate and inhibitor specificity of interleukin-1$\beta$-converting enzyme and related caspases”, J. Biol. Chem., 272 (1997), 7223–7228 | DOI

[36] P. A. Svingen, D. Loegering, J. Rodriquez, X. W. Meng, P. W. Mesner Jr., S. Holbeck, A. Monks, S. Krajewski, D. A. Scudiero, E. A. Sausville, J. C. Reed, Y. A. Lazebnik, S. H. Kaufmann, “Components of the cell death machine and drug sensitivity of the National Cancer Institute Cell Line Panel”, Clin. Cancer Res., 10 (2004), 6807–6820 | DOI