Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_3_a4, author = {A. V. Sintsov and M. V. Iakobovski and S. H. Kaufmann and M. A. Khanin}, title = {An optimization model of apoptosis: determination of kinetic constants}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--73}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/} }
TY - JOUR AU - A. V. Sintsov AU - M. V. Iakobovski AU - S. H. Kaufmann AU - M. A. Khanin TI - An optimization model of apoptosis: determination of kinetic constants JO - Matematičeskoe modelirovanie PY - 2007 SP - 59 EP - 73 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/ LA - ru ID - MM_2007_19_3_a4 ER -
%0 Journal Article %A A. V. Sintsov %A M. V. Iakobovski %A S. H. Kaufmann %A M. A. Khanin %T An optimization model of apoptosis: determination of kinetic constants %J Matematičeskoe modelirovanie %D 2007 %P 59-73 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/ %G ru %F MM_2007_19_3_a4
A. V. Sintsov; M. V. Iakobovski; S. H. Kaufmann; M. A. Khanin. An optimization model of apoptosis: determination of kinetic constants. Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 59-73. http://geodesic.mathdoc.fr/item/MM_2007_19_3_a4/
[1] M. Barry, R. C. Bleackley, “Cytotoxic T lymphocytes: all roads lead to death”, Nature Rev. Immunology, 2 (2002), 401–409
[2] J. Lieberman, “The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal”, Nature Rev. Immunology, 3 (2003), 361–370 | DOI
[3] S. M. Raja, B. Wang, M Dantuluri, U. R. Desai, B. Demeler, K. Spiegel, S. S. Metkar, C. J. Froelich J., “Cyto-toxic Cell Granule-mediated Apoptosis”, Biol. Chem., 277 (2002), 49523–49530 | DOI
[4] J. A. Heibein, M. Barry, B. Motyka, R. C. Bleackley, “Granzyme B-induced loss of mitochondrial inner membrane potential and cytochrome $c$ release are caspase independent”, J. Immunology, 163 (1999), 4683–4693
[5] C. Scaffidi, S. Fulda, A. Srinivasan, C. Friesen, K. J. Tomaselli, K. M. Debatin, P. H. Krammer, M. E. Peter, “Two CD95 (APO-1/Fas) signaling pathways”, EMBO J., 17 (1998), 1675–1687 | DOI
[6] K. V. Tyurin, M. A. Khanin, “Optimalnost fermentativnykh fiziologicheskikh sistem”, Izv. Akad. Na-uk. Ser. Biol., 6 (2000), 713–720
[7] M. A. Khanin, A. N. Lobanov, S. H. Kaufmann, “Apoptosis: an optimization approach”, Comput. Biol. Med., 34 (2004), 449–459 | DOI
[8] K. V. Tyurin, M. A. Khanin, “Optimality principle and determination of kinetic constants for biochemical reactions”, Math. Med. Biol., 22 (2005), 1–14 | DOI | Zbl
[9] M. Fussenegger, J. E. Bailey, J. Varner, “A mathematical model of caspase function in apoptosis”, Nat. Biotechnol., 18 (2000), 768–774 | DOI
[10] M. Bentele, I. Lavrik, M. Ulrich, S. Stosser, D. W. Heermann, H. Kalthoff, P. H. Krammer, R. Eils, “Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis”, J. Cell Biol., 166 (2004), 839–851 | DOI
[11] T. Eissing, H. Conzelmann, E. D. Gilles, F. Allgower, E. Bullinger, P. Scheurich, “Bistability analyses of a caspase activation model for receptor-induced apoptosis”, J. Biol. Chem., 279 (2004), 36892–36897 | DOI
[12] W. R. Hess, “Das prinzip des kleinsten kraftverbrauches im dienste hamodynamischer forschung”, Arch. Anat. Physiol., 2 (1914), 1–62 | MR
[13] W. C. Earnshow, L. M. Martins, S. H. Kaufmann, “Mammalian caspases: structure, activation, substrates and functions during apoptosis”, Annu. Rev. Biochem., 68 (1999), 383–424 | DOI
[14] F. Andrade, S. Roy, D. Nicholson, N. Thornberry, A. Rosen, L. Casciola-Rosen, “Granzyme B directly and ef-ficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis”, Immunity, 8 (1998), 451–460 | DOI
[15] V. Cowling, J. Downward, “Caspase-6 is the direct activator of caspase-8 in the cytochrome $c$-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain”, Cell Death Differ., 9 (2002), 1046–1056 | DOI
[16] D. Sohn, K. Schulze-Osthoff, R. U. Janicke, “Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis”, J. Biol. Chem., 280 (2005), 5267–5273 | DOI
[17] Q. Deveraux, R. Takahashi, G. S. Salvesen, J. C. Reed, “$\mathrm{X}$-linked IAP is a direct inhibitor of cell death proteases”, Nature, 388 (1997), 300–303 | DOI
[18] N. Roy, Q. L. Deveraux, R. Takahashi, G. S. Salvesen, J. C. Reed, “The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases”, EMBO J., 16 (1997), 6914–6925 | DOI
[19] G. S. Salvesen, C. S. Duckett, “IAP proteins: blocking the road to death's door”, Mol. Cell. Biol., 3 (2002), 401–410
[20] H. R. Stennicke, J. M. Jurgensmeier, H. Shin, Q. Deveraux, B. B. Wolf, X. Yang, Q. Zhou, H. M. Ellerby, L. M. Ellerby, D. Bredesen, D. R. Green, J. C. Reed, C. J. Froelich, G. S. Salvesen, “Pro-caspase-3 is a major physiologic target of caspase-8”, J. Biol. Chem., 273 (1998), 27084–27090 | DOI
[21] X. Yang, H. R. Stennicke, B. Wang, D. R. Green, R. U. Janicke, A. Srinivasan, P. Seth, G. S. Salvesen, C. J. Froelich, “Granzyme B mimics apical caspases. Description of a unified pathway for trans-activation of exe-cutioner caspase-3 and-7”, J. Biol. Chem., 273 (1998), 34278–34283 | DOI
[22] K. V. Tyurin, M. A. Khanin, “Optimality principle and determination of kinetic constants for biochemical reactions”, Math. Med. Biol., 22 (2005), 1–14 | DOI | Zbl
[23] S. S. Metkar, B. Wang, M. L. Ebbs, J. H. Kim, Y. J. Lee, S. M. Raja, C. J. Froelich, “Granzyme B activates pro-caspase-3 which signals a mitochondrial amplification loop for maximal apoptosis”, J. Cell Biol., 160 (2003), 875–885 | DOI
[24] G. MacDonald, L. Shi, C. Vande Velde, J. Lieberman, A. H. Greenberg, “Mitochondria-dependent and independent regulation of Granzyme B-induced apoptosis”, J. Exp. Med., 189 (1999), 131–144 | DOI
[25] M. J. Pinkoski, N. J. Waterhouse, J. A. Heibein, B. B. Wolf, T. Kuwana, J. C. Goldstein, D. D. Newmeyer, R. C. Bleackley, D. R. Green, “Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway”, J. Biol Chem., 276 (2001), 12060–12067 | DOI
[26] L. Casciola-Rosen, F. Andrade, D. Ulanet, W. B. Wong, A. Rosen, “Cleavage by granzyme B is strongly pre-dictive of autoantigen status: implications for initiation of autoimmunity”, J. Exp. Med., 190 (1999), 815–826 | DOI
[27] E. Sharif-Askari, A. Alam, E. Rheaume, P. J. Beresford, C. Scotto, K. Sharma, D. Lee, W. E. DeWolf, M. E. Nuttall, J. Lieberman, R. P. Sekaly, “Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation”, EMBO J., 20 (2001), 3101–3113 | DOI
[28] F. G. Gervais, N. A. Thornberry, S. C. Ruffolo, D. W. Nicholson, S. Roy, “Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide”, J. Biol. Chem., 273 (1998), 17102–17108 | DOI
[29] J. A. Mahoney, J. A. Odin, S. M. White, D. Shaffer, A. Koff, L. Casciola-Rosen, A. Rosen, “The human homologue of the yeast polyubiquitination factor Ufd2p is cleaved by caspase 6 and granzyme B during apoptosis”, Biochem. J., 361 (2002), 587–595 | DOI
[30] H. R. Stennicke, G. S. Salvesen, “Caspases – controlling intracellular signals by protease zymogen activation”, Biochim. Biophys. Acta, 1477 (2000), 299–306
[31] M. Mancini, C. E. Machamer, S. Roy, D. W. Nicholson, N. A. Thornberry, L. A. Casciola-Rosen, A. Rosen, “Cas-pase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis”, J. Cell Biol., 149 (2000), 603–612 | DOI
[32] L. A. Casciola-Rosen, D. W. Nicholson, T. Chong, K. R. Rowan, N. A. Thornberry, D. K. Miller, A. Rosen, “Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death”, J. Exp. Med., 183 (1996), 1957–1964 | DOI
[33] D. McIlroy, H. Sakahira, R. V. Talanian, S. Nagata, “Involvement of caspase 3-activated DNase in internu-cleosomal DNA cleavage induced by diverse apoptotic stimuli”, Oncogene, 18 (1999), 4401–4408 | DOI
[34] H. R. Stennicke, M. Renatus, M. Meldal, G. S. Salvesen, “Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8”, Biochem. J., 350 (2000), 563–568 | DOI
[35] N. Margolin, S. A. Raybuck, K. P. Wilson, W. Chen, T. Fox, Y. Gu, D. J. Livingston, “Substrate and inhibitor specificity of interleukin-1$\beta$-converting enzyme and related caspases”, J. Biol. Chem., 272 (1997), 7223–7228 | DOI
[36] P. A. Svingen, D. Loegering, J. Rodriquez, X. W. Meng, P. W. Mesner Jr., S. Holbeck, A. Monks, S. Krajewski, D. A. Scudiero, E. A. Sausville, J. C. Reed, Y. A. Lazebnik, S. H. Kaufmann, “Components of the cell death machine and drug sensitivity of the National Cancer Institute Cell Line Panel”, Clin. Cancer Res., 10 (2004), 6807–6820 | DOI