Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_3_a0, author = {D. L. Golovashkin}, title = {Formulation of the radiation condition for modeling the cylindrical doe operation using a~finite difference solution of {Maxwell's} equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--14}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_3_a0/} }
TY - JOUR AU - D. L. Golovashkin TI - Formulation of the radiation condition for modeling the cylindrical doe operation using a~finite difference solution of Maxwell's equations JO - Matematičeskoe modelirovanie PY - 2007 SP - 3 EP - 14 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_3_a0/ LA - ru ID - MM_2007_19_3_a0 ER -
%0 Journal Article %A D. L. Golovashkin %T Formulation of the radiation condition for modeling the cylindrical doe operation using a~finite difference solution of Maxwell's equations %J Matematičeskoe modelirovanie %D 2007 %P 3-14 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2007_19_3_a0/ %G ru %F MM_2007_19_3_a0
D. L. Golovashkin. Formulation of the radiation condition for modeling the cylindrical doe operation using a~finite difference solution of Maxwell's equations. Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2007_19_3_a0/
[1] V. V. Panasyuk, M. P. Savruk, Z. T. Nazarchuk, Metod singulyarnykh integralnykh uravnenii v dvumernykh zadachakh difraktsii, Nauk. Dumka, Kiev, 1984 | MR
[2] E. N. Vasilev, “Algoritmizatsiya zadach difraktsii na osnove integralnykh uravnenii”, Sb. nauch.-metod. st. po prikl. elektrodinamike, no. 1, 1977, 94–128
[3] G. Kron, “Equivalent circuit of the field equations of Maxwell, I”, Proc. IRE, 32 (1944), 289–299 | DOI | MR | Zbl
[4] O. A. Taflove, S. Hagness, Computation Electrodynamics: The Finite-Difference Time-Domain Method, 2nd. ed., Arthech House Publishers, Boston, 2000 | MR | Zbl
[5] M. Mirotznik, D. Prather, J. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements”, J. Mod. Opt., 43:7 (1996), 1309–1321
[6] A. S. Ilinskii, V. V. Kravtsov, A. G. Sveshnikov, Matematicheskie modeli elektrodinamiki, Vysshaya shkola, M., 1991
[7] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas Propag., 14 (1966), 302–307 | DOI | Zbl
[8] D. L. Golovashkin, A. A. Degtyarev, “Algoritm vtorogo poryadka tochnosti po vremeni dlya resheniya uravnenii Maksvella”, Kompyuternaya optika, 1998, no. 18, 39–41
[9] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations”, IEEE Trans. Electromagnetic Compatibility, 23 (1981), 377–382 | DOI
[10] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, 1994, no. 114, 185–200 | DOI | MR | Zbl
[11] A. Taflove, M. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations”, IEEE Transactions of Microwave Theory and Techniques, 23:8 (1975), 623–630 | DOI
[12] K. R. Umashankar, A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects”, IEEE Trans. Electromagnetic Compatibility, 24:4 (1982), 397–405 | DOI
[13] D. L. Golovashkin, “Difraktsii N-volny na dvumernoi idealno provodyaschei reshetke”, Matematicheskoe modelirovanie, 17:4 (2005), 53–61 | Zbl
[14] V. V. Nikolskii, T. I. Nikolskaya, Elektrodinamika i rasprostranenie radiovoln, Ucheb. posobie dlya vuzov, 3-e izd., pererab. i dop., Nauka, M., 1989
[15] D. L. Golovashkin, “Difraktsii H-volny na dvumernoi dielektricheskoi reshetke”, Matematicheskoe modelirovanie, 16:9 (2004), 83–91 | Zbl
[16] V. A. Soifer, Metody kompyuternoi optiki, Izdanie vtoroe, ispravlennoe, Fizmatlit, M., 2003 | Zbl
[17] Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999
[18] Dzheims M. Ortega, Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR
[19] R. B. Vaganov, B. Z. Katsenelenbaum, Osnovy teorii difraktsii, Nauka, M., 1982 | MR | Zbl
[20] E. I. Butikov, Optika, Uchebnoe posobie pererab. i dop., Nevskii Dialekt, BKhV-Peterburg, SPb., 2003