Mesh domain decomposition in the finite-difference solution of Maxwell's equations
Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 48-58

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the mesh domain decomposition when studying diffraction by optical structures with subwavelength features using the finite-difference solution of Maxwell's equations. Special consideration to the case of decomposition onto non-overlapping sub-domains is given. Theoretically estimated figures of the algorithms' acceleration and the acceleration of computational procedures at various decomposition parameters are compared.
@article{MM_2007_19_2_a4,
     author = {D. L. Golovashkin and N. L. Kazanskiy},
     title = {Mesh domain decomposition in the finite-difference solution of {Maxwell's} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/}
}
TY  - JOUR
AU  - D. L. Golovashkin
AU  - N. L. Kazanskiy
TI  - Mesh domain decomposition in the finite-difference solution of Maxwell's equations
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 48
EP  - 58
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/
LA  - ru
ID  - MM_2007_19_2_a4
ER  - 
%0 Journal Article
%A D. L. Golovashkin
%A N. L. Kazanskiy
%T Mesh domain decomposition in the finite-difference solution of Maxwell's equations
%J Matematičeskoe modelirovanie
%D 2007
%P 48-58
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/
%G ru
%F MM_2007_19_2_a4
D. L. Golovashkin; N. L. Kazanskiy. Mesh domain decomposition in the finite-difference solution of Maxwell's equations. Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 48-58. http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/