Mesh domain decomposition in the finite-difference solution of Maxwell's equations
Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the mesh domain decomposition when studying diffraction by optical structures with subwavelength features using the finite-difference solution of Maxwell's equations. Special consideration to the case of decomposition onto non-overlapping sub-domains is given. Theoretically estimated figures of the algorithms' acceleration and the acceleration of computational procedures at various decomposition parameters are compared.
@article{MM_2007_19_2_a4,
     author = {D. L. Golovashkin and N. L. Kazanskiy},
     title = {Mesh domain decomposition in the finite-difference solution of {Maxwell's} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/}
}
TY  - JOUR
AU  - D. L. Golovashkin
AU  - N. L. Kazanskiy
TI  - Mesh domain decomposition in the finite-difference solution of Maxwell's equations
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 48
EP  - 58
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/
LA  - ru
ID  - MM_2007_19_2_a4
ER  - 
%0 Journal Article
%A D. L. Golovashkin
%A N. L. Kazanskiy
%T Mesh domain decomposition in the finite-difference solution of Maxwell's equations
%J Matematičeskoe modelirovanie
%D 2007
%P 48-58
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/
%G ru
%F MM_2007_19_2_a4
D. L. Golovashkin; N. L. Kazanskiy. Mesh domain decomposition in the finite-difference solution of Maxwell's equations. Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 48-58. http://geodesic.mathdoc.fr/item/MM_2007_19_2_a4/

[1] A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd. ed., Arthech House Publishers, Boston, 2000 | MR | Zbl

[2] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas Propag., 14:3 (1966), 302–307 | DOI | Zbl

[3] G. Kron, “Equivalent circuit of the field equations of Maxwell, I”, Proc. IRE, 32 (1944), 289–299 | DOI | MR | Zbl

[4] A. T. Perlik, “Predicting scattering of electromagnetic fields using FD-TD on a connection machine”, IEEE Transactions on Magnetics, 25:4 (1989), 2910–2912 | DOI

[5] S. Shi, X. Tao, L. Yang, D. W. Prather, “Analysis of diffractive optical elements using a nonuniform finite-difference time-domain method”, Optical Engineering, 40:4 (2001), 503–510 | DOI

[6] B. Fidel, E. Heyman, R. Kastner, R. W. Zioklowski, “Hybrid ray-FDTD moving window approach to pulse propagation”, Journal of Computational Physics, 138:2 (1997), 480–500 | DOI | MR | Zbl

[7] A. A. Samarskii, P. N. Vabischevich, Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[8] S. Borgsmuller, S. Noehte, C. Dietrich, T. Kresse, R. Manner, “Computer-generated stratified diffractive optical elements”, Applied Optics, 42:26 (2003), 5274–5283 | DOI

[9] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1973

[10] V. V. Nikolskii, T. I. Nikolskii, Elektrodinamika i rasprostranenie radiovoln, Ucheb posobie dlya vuzov 3-e izd., Nauka, M., 1989

[11] D. L. Golovashkin, “Difraktsiya $H$-volny na dvumernoi idealno provodyaschei reshetke”, Matematicheskoe modelirovanie, 17:4 (2005), 53–61 | Zbl

[12] D. L. Golovashkin, “Difraktsiya N-volny na dvumernoi idealno provodyaschei reshetke”, Matematicheskoe modelirovanie, 17:4 (2005), 53–61 | Zbl

[13] A. Taflove, K. R. Umashankar, “Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section”, Proc. IEEE, 77:5 (1989), 682–699 | DOI

[14] V. V. Voevodin, V. V. Voevodin, Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002

[15] V. A. Soifer (red.), Metody kompyuternoi optiki, 2-e izd., Fizmatlit, M., 2003 | Zbl

[16] R. Petit (ed.), Electromagnetic Theory on Gratings, Springer-Verlag, Berlin-Heidelberg-New York, 1980 | MR