Peculiarities of transonic inviscid flow over a concave airfoil
Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 33-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical simulation of inviscid transonic flow over concave airfoil was carried out. Surface showing dependence of lift coefficient on freestream Mach number and angle of attack has been plotted based on experimental results. Has been found that this surface has a gap when angle of attack exceeds some critical angle, so there could be lift coefficient jumps for some values of freestream Mach number.
@article{MM_2007_19_2_a2,
     author = {D. S. Semyonov},
     title = {Peculiarities of transonic inviscid flow over a concave airfoil},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_2_a2/}
}
TY  - JOUR
AU  - D. S. Semyonov
TI  - Peculiarities of transonic inviscid flow over a concave airfoil
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 33
EP  - 38
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_2_a2/
LA  - ru
ID  - MM_2007_19_2_a2
ER  - 
%0 Journal Article
%A D. S. Semyonov
%T Peculiarities of transonic inviscid flow over a concave airfoil
%J Matematičeskoe modelirovanie
%D 2007
%P 33-38
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_2_a2/
%G ru
%F MM_2007_19_2_a2
D. S. Semyonov. Peculiarities of transonic inviscid flow over a concave airfoil. Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 33-38. http://geodesic.mathdoc.fr/item/MM_2007_19_2_a2/

[1] Hafez M. M., Guo W. H., “Some anomalies of numerical simulation of shock waves. Pt. I: Inviscid flows”, Computers and Fluids, 28:4–5 (1999), 701–719 | DOI | MR

[2] Hafez M. M., “Non-uniqueness problems in transonic flows”, IUTAM Symposium Transsonicum IV, ed. Sobieczky H., Kluwer, Dordrecht, 2003, 33–40 | Zbl

[3] Kuz'min A. G., Ivanova A. V., “The structural instability of transonic flow associated with amalgamation/splitting of supersonic regions”, J. of Theoretical and Computational Fluid Dynamics, 18:5 (2004), 335–344, Springer | DOI

[4] Caughey D. A., “Stability of unsteady flow past airfoils exhibiting transonic non-uniqueness”, CFD Journal, 13(3):60 (2004), 427–438

[5] Mohammadi B., “Flow control using shape optimization for unsteady flows”, Computational Fluid Dynamics. Tools of Numerical Analysis, Proc. ECCOMAS-1998, eds. K. D. Papailiou et al., Wiley, 1998, 338–341

[6] Mohammadi B., Fluid Dynamics computation with NSC2KE: an user-guide, Release 1.0, INRIA Technical report RT-0164, 1994

[7] Van Albada G. D., Van Leer B., Flux vector splitting and Runge–Kutta methods for the Euler equations, ICASE Report No 84-27, 1984

[8] Steger J., Warming R. F., “Flux vector splitting for the inviscid gas dynamics with applications to finitedifference methods”, J. Comp. Phys., 40 (1983), 263–293 | DOI | MR

[9] Kuzmin A. G., Ivanova A. V., “Needinstvennost transzvukovogo obtekaniya aerodinamicheskogo profilya”, Izv. RAN, ser. Mekhanika zhidkosti i gaza, 2004, no. 4, 152–159 | MR

[10] Semenov D. S., “Neustoichivye rezhimy transzvukovogo obtekaniya aerodinamicheskogo profilya”, Matematicheskoe modelirovanie, 16:11 (2004), 101–106 | Zbl

[11] Kuz'min A. G., “Instability and bifurcation of transonic flow over airfoils”, 4th AIAA Theoretical Fluid Mechanics Meeting (Toronto, Ontario, June 6–9, 2005), 2005, 4800