Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_2_a0, author = {K. N. Volkov}, title = {Large-eddy simulation of circle turbulent impingement jet}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--22}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_2_a0/} }
K. N. Volkov. Large-eddy simulation of circle turbulent impingement jet. Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2007_19_2_a0/
[1] Baughn J., Shimizu S., “Heat transfer measurements from a surface with uniform heat flux and an impinging jet”, Journal of Heat Transfer, 111 (1989), 1096–1098 | DOI
[2] Baughn J., Hechanova A., Yan X., “An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet”, Journal of Heat Transfer, 113 (1991), 1023–1025 | DOI
[3] Cooper D., Jackson D., Launder B., Liao G., “Impinging jet studies for turbulence model assessment. Flowfield experiments”, International Journal of Heat and Mass Transfer, 36:10 (1993), 2675–2684 | DOI
[4] Jambunathan K., Lai E., Moss M. A., Button B. L., “A review of heat transfer for single circular jet impingement”, International Journal of Heat and Fluid Flow, 13:4 (1992), 106–115 | DOI
[5] Lytle D., Webb B., “Air jet impingement heat transfer at low nozzle-plate spacings”, International Journal of Heat and Mass Transfer, 37:2 (1994), 1687–1697 | DOI
[6] Beitelmal A. H., Saad M. A., Patel C. D., “The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet”, International Journal of Heat and Fluid Flow, 21:2 (2000), 156–163 | DOI
[7] Collucci D. W., Viskanta R., “Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet”, Experimental Thermal and Fluid Science, 13:1 (1996), 71–80 | DOI
[8] Garimella S. V., Nenaydykh B., “Nozzle-geometry effects in liquid jet impingement heat transfer”, International Journal of Heat and Mass Transfer, 39:14 (1996), 2915–2923 | DOI
[9] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974
[10] Craft T. J., Graham L. J. W., Launder B. E., “Impinging jet studies for turbulence model assessment. An examination of the performance of four turbulence models”, International Journal of Heat and Mass Transfer, 36:10 (1993), 2685–2697 | DOI
[11] Craft T. J., Iacovides H., Yoon J. H., “Progress in the use of non-linear two-equation models in the computation of convective heat-transfer in impinging and separated flows”, Flow, Turbulence and Combustion, 63:1–4 (2000), 59–80 | DOI | Zbl
[12] Durbin P. A., “On the $k-\varepsilon$ stagnation point anomaly”, International Journal of Heat and Fluid Flow, 17:1 (1996), 89–90 | DOI
[13] Abdon A., Sunden B., “Numerical simulation of turbulent impingement cooling”, Proceedings of ASME Turbo Expo-2001 (4–7 June 2001, New Orleans), 2001
[14] Wang S. J., Mujumdar A. S., “A comparative study of five low Reynolds number $k-\varepsilon$ models for impingement heat transfer”, Applied Thermal Engineering, 25:1 (2005), 31–44 | DOI
[15] Bouainouche M., Bourabaa N., Desmet B., “Numerical study of the wall shear stress produced by the impingement of a plane turbulent jet on a plate”, International Journal of Numerical Methods for Heat and Fluid Flow, 7:5–6 (1997), 548–564 | Zbl
[16] Bolot R., Imbert M., Coddet C., “On the use of a low-Reynolds extension to the Chen-Kim $(k-\varepsilon)$ model to predict thermal exchanges in the case of an impinging plasma jet”, International Journal of Heat and Mass Transfer, 44:6 (2001), 1095–1106 | DOI | Zbl
[17] Ashforth-Frost S., Jambunathan K., “Numerical prediction of semi-confined jet impingement and comparison with experimental data”, International Journal of Numerical Methods in Fluids, 23:3 (1996), 295–306 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[18] Amano R. S., Brandt H., “Numerical study of turbulent axisymmetric jets impinging on a flat plate and flowing into an axisymmetric cavity”, ASME Journal of Fluids Engineering, 106:4 (1984), 410–417 | DOI
[19] Amano R., Sugiyama S., “Investigation on turbulent heat transfer of an axisymmetric jet impinging on a flat plate”, Bulletin of the JSME, 28:235, 74–79
[20] Heyerichs K., Pollard A., “Heat transfer in separated and impinging turbulent flows”, International Journal of Heat and Mass Transfer, 39:12 (1996), 2385–2400 | DOI | Zbl
[21] Vieser W., Esch T., Menter F., Heat transfer predictions using advanced two-equation turbulence models, CFX Validation Report. 2002. JCFX-VAL10/0602
[22] Park T. S., Sung H. J., “Development of a near-wall turbulence model and application to jet impingement heat transfer”, International Journal of Heat and Fluid Flow, 22:1 (2001), 10–18 | DOI
[23] Behnia M., Parneix S., Durbin P., “Simulations of the jet impingement heat transfer with the $k-e-\nu^2$ model”, Annual Research Briefs. Center for Turbulence Research, Stanford University, 1996, 3–16
[24] Behnia M., Parneix S., Durbin P. A., “Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate”, International Journal of Heat and Mass Transfer, 41:13 (1998), 1845–1855 | DOI
[25] Chung Y. M., Luo K. H., Sandham N. D., “Numerical study of momentum and heat transfer in unsteady impinging jets”, International Journal of Heat and Fluid Flow, 23:5 (2002), 592–600 | DOI
[26] Liu T., Sullivan J. P., “Heat transfer and flow structures in an excited circular impinging jet”, International Journal of Heat and Mass Transfer, 39:17 (1996), 3695–3706 | DOI
[27] Chung Y. M., Luo K. H., “Unsteady heat transfer analysis of an impinging jet”, Journal of Heat Transfer, 124 (2002), 1039–1048 | DOI
[28] Carcasci C., “An experimental investigation on air impinging jets using visualisation methods”, International Journal of Thermal Science, 38:9 (1999), 808–818 | DOI
[29] Angioletti M., Di Tommaso R. M., Nino E., Ruocco G., “Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets”, International Journal of Heat and Mass Transfer, 46:10 (2003), 1703–1713 | DOI
[30] Hyun G.-S., Nogami M., Senda J., Fujimoto H., “Study on unsteady gas jet and wall impingement jet. Comparison of experimental results with numerical analysis by discrete vortex method”, JSAE Review., 17 (1996), 347–354 | DOI
[31] Voke P. R., Gao S., “Numerical study of heat transfer from an impinging jet”, International Journal of Hear and Mass Transfer, 41:5 (1998), 671–680 | DOI | Zbl
[32] Tsubokura M., Kobayashi T., Taniguchi N., Jones W. P., “A numerical study on the eddy structures of impinging jets excited at the inlet”, International Journal of Heat and Fluid Flow, 24:4 (2003), 500–511 | DOI
[33] Smagorinsky J., “General circulation experiments with the primitive equations”, Journal of the Basic Experiment, 91 (1963), 99–165
[34] Horiuti K., “Backward scatter of subgrid-scale energy in wall-bounded and free shear turbulence”, Journal of Physical Society of Japan, 66:1 (1997), 91–107 | DOI
[35] Shen S., Ding F., Han J., Lin Y.-L., Arya S. P., Proctor F. H., “Numerical modeling studies of wake vortices – Real case simulation”, Aerospace Sciences Meeting and Exhibit, 37th (Reno, NV, Jan. 11–14, 1999), 1999, 755
[36] Volkov K. N., “Primenenie metoda kontrolnogo obema dlya resheniya zadach mekhaniki i gaza na nestrukturirovannykh setkakh”, Vychislitelnye metody i programmirovanie, 6:1 (2005), 43–60
[37] Volkov K. N., “Raznostnye skhemy rascheta potokov povyshennoi razreshayuschei sposobnosti i ikh primenenie dlya resheniya zadach gazovoi dinamiki”, Vychislitelnye metody i programmirovanie, 6:1 (2005), 146–167