Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_12_a3, author = {A. N. Vasilyev}, title = {Mathematical modeling of distributed systems by neural networks}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {32--42}, publisher = {mathdoc}, volume = {19}, number = {12}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_12_a3/} }
A. N. Vasilyev. Mathematical modeling of distributed systems by neural networks. Matematičeskoe modelirovanie, Tome 19 (2007) no. 12, pp. 32-42. http://geodesic.mathdoc.fr/item/MM_2007_19_12_a3/
[1] S. Khaikin, Neironnye seti: polnyi kurs, 2-e izdanie, Izd. dom “Vilyamc”, M., 2006
[2] A. I. Galushkin, Teoriya neironnykh setei, Kn. 1, IPRZhR, M., 2000
[3] Isaac E. Lagaris, Aristidis Likas, Dimitrios I. Fotiadis, “Artificial Neural Networks for Solving Ordinary and Partial Differential Equations”, IEEE Transactions on Neural Networks, 9:5 (1998), 987–1000 | DOI
[4] Ryusuke Masuoka, “Neural Networks Learning Differential Data”, IEICE Trans. Inf. and Syst., E83-D:8 (2000), 1291–1299
[5] A. I. Galushkin, Neiromatematika, Kn. 6, IPRZhR, M., 2002
[6] V. I. Gorbachenko, Neirokompyutery v reshenii kraevykh zadach teorii polya, Kn. 10, Radiotekhnika, M., 2003
[7] S. A. Terekhoff, N. N. Fedorova, Cascade Neural Networks in Variational Methods For Boundary Value Problems, Russian Federal Nuclear Center, VNIITF
[8] Edward J. Kansa, Motivation for using radial basis functions to solve PDEs, Lawrence Livermore National Laboratory and Embry-Riddle Aeronatical University, 1999; http://rbf-pde.uah.edu/kansaweb.ps
[9] Bengt Fornberg, Elisabeth Larsson, “A Numerical Study of some Radial Basis Function based Solution Methods for Elliptic PDEs”, Computers and Mathematics with Applications, 46 (2003), 891–902 | DOI | MR
[10] A. N. Vasilev, D. A. Tarkhov, “Primenenie neironnykh setei k neklassicheskim zadacham matematicheskoi fiziki”, Sbornik dokladov Mezhdunarodnoi konferentsii po myagkim vychisleniyam i izmereniyam SSM'2003, t. 1, SPb, SPbGETU “LETI”, 337–340
[11] A. N. Vasilev, D. A. Tarkhov, “Novye podkhody na osnove YuVR – setei k resheniyu kraevykh zadach dlya uravneniya Laplasa na ploskosti”, Neirokompyutery: razrabotka, primenenie, no. 7–8, Radiotekhnika, M., 2004, 119–126
[12] A. N. Vasilev, D. A. Tarkhov, “Neironnye seti kak novyi universalnyi podkhod k chislennomu resheniyu zadach matematicheskoi fiziki”, Neirokompyutery: razrabotka, primenenie, no. 7–8, Radiotekhnika, M., 2004, 111–118
[13] A. N. Vasilev, D. A. Tarkhov, “Neirosetevye podkhody k resheniyu kraevykh zadach v mnogomernykh sostavnykh oblastyakh”, Izvestiya TRTU, 2004, no. 9, 80–89
[14] A. N. Vasilev, D. A. Tarkhov, “Primenenie iskusstvennykh neironnykh setei k modelirovaniyu mnogokomponentnykh sistem so svobodnoi granitsei”, Izvestiya TRTU, 2004, no. 9, 89–100
[15] A. Vasilyev, D. Tarkhov, G. Guschin, “Neural Networks Method in Pressure Gauge Modeling”, Proceedings of the 10th IMEKO TC7 International Symposium on Advances of Measurement Science, V. 2 (2004, Saint-Petersburg, Russia), 275–279
[16] A. N. Vasilev, D. A. Tarkhov, “KVR-seti i nekotorye zadachi matematicheskoi fiziki”, Sbornik dokladov Mezhdunarodnoi konferentsii po myagkim vychisleniyam i izmereniyam-SSM'2004, T. 1, SPbGETU “LETI”, SPb, 309–312
[17] A. N. Vasilev, D. A. Tarkhov, “Neirosetevaya metodologiya postroeniya priblizhennykh reshenii differentsialnykh uravnenii po eksperimentalnym dannym”, Intellektualnye i mnogoprotsessornye sistemy-2005, Materialy mezhdunarodnoi konferentsii. T. 2, Taganrog-Donetsk-Minsk, 2005, 219–223
[18] A. N. Vasilyev, D. A. Tarkhov, “New neural network technique to the numerical solution of mathematical physics problems. I: Simple problems”, Optical Memory and Neural Networks, 14:1 (2005), 59–72 | MR
[19] A. N. Vasilyev, D. A. Tarkhov, “New neural network technique to the numerical solution of mathematical physics problems. I: Complicated and nonstandard problems”, Optical Memory and Neural Networks, 14:2 (2005), 97–122 | MR
[20] D. A. Tarkhov, Neironnye seti. Modeli i algoritmy, Kn. 18, Radiotekhnika, M., 2005
[21] A. N. Vasilev, D. A. Tarkhov, “Raschet teploobmena v sisteme “sosudy-tkani” na osnove neironnykh setei”, Sovremennye problemy neiroinformatiki, Ch. 2 kn. 23, Radiotekhnika, M., 2006
[22] A. N. Vasilev, “Novyi podkhod k postroeniyu priblizhennogo resheniya ellipticheskoi zadachi v sluchae mnogokomponentnoi oblasti na osnove iskusstvennykh neironnykh setei”, Materialy VI Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh-NPNJ-2006, Vuzovskaya kniga, SPb.-M., 89–91
[23] A. N. Vasilev, D. A. Tarkhov, “Novyi podkhod k chislennomu resheniyu zadach matematicheskoi fiziki na osnove iskusstvennykh neironnykh setei”, Materialy VI Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh-NPNJ-2006, Vuzovskaya kniga, SPb.-M., 91–92 | MR
[24] A. N. Vasilev, D. A. Tarkhov, “Evolyutsionnye algoritmy resheniya kraevykh zadach v oblastyakh, dopuskayuschikh dekompozitsiyu”, Matem. modelirovanie, 19:12 (2007), 52–62
[25] A. N. Vasilev, D. A. Tarkhov, “Postroenie priblizhennykh neirosetevykh modelei po raznorodnym dannym”, Matematicheskoe modelirovanie, 19:12 (2007), 43–51
[26] M. A. Aleksidze, Fundamentalnye funktsii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1991 | MR | Zbl
[27] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl
[28] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl
[29] A. N. Vasilev, N. G. Kuznetsov, “O nekotorykh ekstremalnykh zadachakh, voznikayuschikh v akustike. Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. trudov vsesoyuznoi shkoly, Novosibirsk, 1989, 94–98 | MR