Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_11_a9, author = {P. V. Breslavskiy and V. I. Mazhukin}, title = {Modeling of shock waves interaction on dynamically adapting grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {83--95}, publisher = {mathdoc}, volume = {19}, number = {11}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_11_a9/} }
TY - JOUR AU - P. V. Breslavskiy AU - V. I. Mazhukin TI - Modeling of shock waves interaction on dynamically adapting grids JO - Matematičeskoe modelirovanie PY - 2007 SP - 83 EP - 95 VL - 19 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_11_a9/ LA - ru ID - MM_2007_19_11_a9 ER -
P. V. Breslavskiy; V. I. Mazhukin. Modeling of shock waves interaction on dynamically adapting grids. Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 83-95. http://geodesic.mathdoc.fr/item/MM_2007_19_11_a9/
[1] Godunov S. K., “Raznostnyi metod chislennogo raschëta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[2] Van Leer B., “Towards the ultimate conservative finite difference scheme. II. Monotonicity and conservation combined in a second order scheme”, Journal of Computational Physics, 14 (1974), 361–376 | DOI
[3] Boris J. P., Book D. L., Hain K., “Flux-corrected transport: Generalization of the method”, Journal of Computational Physics, 18 (1975), 248–283 | DOI | MR | Zbl
[4] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990 | MR
[5] Harten A., “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49 (1983), 357–393 | DOI | MR | Zbl
[6] Osher S., “Riemann solvers, the entropy condition, and difference approximation”, SIAM J. Numer. Anal., 21:2 (1984), 217–235 | DOI | MR | Zbl
[7] Harten A., “ENO schemes with subcell resolution”, Journal of Computational Physics, 83 (1989), 148–184 | DOI | MR | Zbl
[8] X-D.Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, Journal of Computational Physics, 115 (1994), 200–212 | DOI | MR | Zbl
[9] Colella Ph., Woodward P.R., “The piecewise parabolic method (PPM) for gas-dynamical simulations”, Journal of Computational Physics, 54:1 (1984), 174–201 | DOI | MR | Zbl
[10] Belotserkovskii O. M., Davydov Yu. M., Metod “krupnykh chastits” v gazovoi dinamike, Nauka, M., 1978
[11] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh uravnenii, Fizmatlit, M., 2001 | Zbl
[12] Bondarenko Yu. A., Bashurov V. V., Yanilkin Yu. V., Matematicheskie modeli i chislennye metody dlya resheniya zadach nestatsionarnoi gazovoi dinamiki. Obzor zarubezhnoi literatury, Preprint. RFYaTs-VNIIEF. No 88-2003
[13] LeVeque R. J., Shyue K. M., “One-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods”, SISC, 16:2 (1995), 348–377 | MR | Zbl
[14] Van Leer B., “Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method”, Journal of Computational Physics, 32 (1979), 101–136 | DOI
[15] Henshaw W. D., “A scheme for numerical solution of hyperbolic systems of conservation laws”, Journal of Computational Physics, 68:1 (1987), 25–47 | DOI | Zbl
[16] Grudnitskii V. G., “Pryamoi obobschenno-kharakteristicheskii metod dlya rascheta razryvnykh reshenii zakonov sokhraneniya gazovoi dinamiki”, Matematicheskoe modelirovanie, 16:1 (2004), 90–96 | Zbl
[17] Shyue K. M., “An efficient shock-capturing algorithm for compressible multicomponent problems”, Journal of Computational Physics, 142 (1998), 208–242 | DOI | MR | Zbl
[18] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 28:4 (1988), 503–514 | MR
[19] Liseikin V. D., “On some interpretaitions of a smoothness functional used in constructing regular and adaptive gridrs”, Russ. J. Numer. Anal. Modelling, 8:6 (1993), 507–518 | DOI | MR | Zbl
[20] Darin N. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh raznostnykh setok”, Doklady AN SSSR, 298:1 (1988), 64–68 | MR
[21] Ivanenko S. A., Prokopov G. P., “Metody postroeniya adaptivno-garmonicheskikh setok”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 37:6 (1997), 643–662 | MR | Zbl
[22] Liseikin V. D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 36:1 (1996), 3–41 | MR | Zbl
[23] Azarenok B. N., “Ob odnoi skheme rascheta detonatsionnykh voln na podvizhnykh setkakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 45:12 (2005), 2260–2282 | MR | Zbl
[24] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matematicheskoe modelirovanie, 7:12 (1995), 48–78 | MR | Zbl
[25] Breslavskii P. V., Mazhukin V. I., “Matematicheskoe modelirovanie protsessov impulsnogo plavleniya i ispareniya metalla s yavnym vydeleniem fazovykh granits”, Inzhenerno-fizicheskii zhurnal, 57:1 (1989), 107–114
[26] Mazhukin V. I., Samarskii A. A., O. Kastelyanos, Shapranov A. V., “Metod dinamicheskoi adaptatsii dlya nestatsionarnykh zadach s bolshimi gradientami”, Matematicheskoe modelirovanie, 5:4 (1993), 32–56 | MR | Zbl
[27] Rudenko D. V., Utyuzhnikov S. V., “Primenenie dinamicheski adaptivnykh k resheniyu setok dlya modelirovaniya prostranstvennykh nestatsionarnykh techenii gaza s bolshimi gradientami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:3 (2002), 395–409 | MR | Zbl
[28] Mazhukin V. I., Samarskii A. A., Chuiko M. M., “Metod dinamicheskoi adaptatsii dlya chislennogo resheniya nestatsionarnykh mnogomernykh zadach Stefana”, Dokl. RAN, 368:3 (1999), 307–310 | MR | Zbl
[29] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Ucheb. posobie dlya vuzov. 3-e izd., dop., Nauka, M., 1992 | MR
[30] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Institut kompternykh issledovanii, Moskva-Izhevsk, 2003
[31] Korolëva O. N., Mazhukin V. I., “Matematicheskoe modelirovanie lazernogo plavleniya i ispareniya mnogosloinykh materialov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:5 (2006), 887–901 | MR
[32] Henrick A. K., Aslam T. D., Powers J. M., “Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points”, Journal of Computational Physics, 207 (2005), 542–567 | DOI | Zbl