Modeling of shock waves interaction on dynamically adapting grids
Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The further development of a method of dynamic adaptation for gas dynamics problems describing repeated interaction of shock waves, rarefaction waves and contact boundaries is considered in the present paper. On an example of a test Woodward–Colella problem the efficiency of an offered method for problems of gas dynamics with explicit front tracking of shock waves and contact boundaries is shown. For a problem decision the elementary diffusing type adaptation is used. The choice of adaptation coefficient is reasonable to receive in each of subareas of the decision quasiuniform grid. The interaction of breaks among themselves is given from a Riemann solver. The application of a method of dynamic adaptation has allowed to receive the decision on 420 cells practically coincident with results of WENO5m method on 12800 cells.
@article{MM_2007_19_11_a9,
     author = {P. V. Breslavskiy and V. I. Mazhukin},
     title = {Modeling of shock waves interaction on dynamically adapting grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {19},
     number = {11},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_11_a9/}
}
TY  - JOUR
AU  - P. V. Breslavskiy
AU  - V. I. Mazhukin
TI  - Modeling of shock waves interaction on dynamically adapting grids
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 83
EP  - 95
VL  - 19
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_11_a9/
LA  - ru
ID  - MM_2007_19_11_a9
ER  - 
%0 Journal Article
%A P. V. Breslavskiy
%A V. I. Mazhukin
%T Modeling of shock waves interaction on dynamically adapting grids
%J Matematičeskoe modelirovanie
%D 2007
%P 83-95
%V 19
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_11_a9/
%G ru
%F MM_2007_19_11_a9
P. V. Breslavskiy; V. I. Mazhukin. Modeling of shock waves interaction on dynamically adapting grids. Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 83-95. http://geodesic.mathdoc.fr/item/MM_2007_19_11_a9/

[1] Godunov S. K., “Raznostnyi metod chislennogo raschëta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[2] Van Leer B., “Towards the ultimate conservative finite difference scheme. II. Monotonicity and conservation combined in a second order scheme”, Journal of Computational Physics, 14 (1974), 361–376 | DOI

[3] Boris J. P., Book D. L., Hain K., “Flux-corrected transport: Generalization of the method”, Journal of Computational Physics, 18 (1975), 248–283 | DOI | MR | Zbl

[4] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990 | MR

[5] Harten A., “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49 (1983), 357–393 | DOI | MR | Zbl

[6] Osher S., “Riemann solvers, the entropy condition, and difference approximation”, SIAM J. Numer. Anal., 21:2 (1984), 217–235 | DOI | MR | Zbl

[7] Harten A., “ENO schemes with subcell resolution”, Journal of Computational Physics, 83 (1989), 148–184 | DOI | MR | Zbl

[8] X-D.Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, Journal of Computational Physics, 115 (1994), 200–212 | DOI | MR | Zbl

[9] Colella Ph., Woodward P.R., “The piecewise parabolic method (PPM) for gas-dynamical simulations”, Journal of Computational Physics, 54:1 (1984), 174–201 | DOI | MR | Zbl

[10] Belotserkovskii O. M., Davydov Yu. M., Metod “krupnykh chastits” v gazovoi dinamike, Nauka, M., 1978

[11] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh uravnenii, Fizmatlit, M., 2001 | Zbl

[12] Bondarenko Yu. A., Bashurov V. V., Yanilkin Yu. V., Matematicheskie modeli i chislennye metody dlya resheniya zadach nestatsionarnoi gazovoi dinamiki. Obzor zarubezhnoi literatury, Preprint. RFYaTs-VNIIEF. No 88-2003

[13] LeVeque R. J., Shyue K. M., “One-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods”, SISC, 16:2 (1995), 348–377 | MR | Zbl

[14] Van Leer B., “Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method”, Journal of Computational Physics, 32 (1979), 101–136 | DOI

[15] Henshaw W. D., “A scheme for numerical solution of hyperbolic systems of conservation laws”, Journal of Computational Physics, 68:1 (1987), 25–47 | DOI | Zbl

[16] Grudnitskii V. G., “Pryamoi obobschenno-kharakteristicheskii metod dlya rascheta razryvnykh reshenii zakonov sokhraneniya gazovoi dinamiki”, Matematicheskoe modelirovanie, 16:1 (2004), 90–96 | Zbl

[17] Shyue K. M., “An efficient shock-capturing algorithm for compressible multicomponent problems”, Journal of Computational Physics, 142 (1998), 208–242 | DOI | MR | Zbl

[18] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 28:4 (1988), 503–514 | MR

[19] Liseikin V. D., “On some interpretaitions of a smoothness functional used in constructing regular and adaptive gridrs”, Russ. J. Numer. Anal. Modelling, 8:6 (1993), 507–518 | DOI | MR | Zbl

[20] Darin N. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh raznostnykh setok”, Doklady AN SSSR, 298:1 (1988), 64–68 | MR

[21] Ivanenko S. A., Prokopov G. P., “Metody postroeniya adaptivno-garmonicheskikh setok”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 37:6 (1997), 643–662 | MR | Zbl

[22] Liseikin V. D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 36:1 (1996), 3–41 | MR | Zbl

[23] Azarenok B. N., “Ob odnoi skheme rascheta detonatsionnykh voln na podvizhnykh setkakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 45:12 (2005), 2260–2282 | MR | Zbl

[24] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matematicheskoe modelirovanie, 7:12 (1995), 48–78 | MR | Zbl

[25] Breslavskii P. V., Mazhukin V. I., “Matematicheskoe modelirovanie protsessov impulsnogo plavleniya i ispareniya metalla s yavnym vydeleniem fazovykh granits”, Inzhenerno-fizicheskii zhurnal, 57:1 (1989), 107–114

[26] Mazhukin V. I., Samarskii A. A., O. Kastelyanos, Shapranov A. V., “Metod dinamicheskoi adaptatsii dlya nestatsionarnykh zadach s bolshimi gradientami”, Matematicheskoe modelirovanie, 5:4 (1993), 32–56 | MR | Zbl

[27] Rudenko D. V., Utyuzhnikov S. V., “Primenenie dinamicheski adaptivnykh k resheniyu setok dlya modelirovaniya prostranstvennykh nestatsionarnykh techenii gaza s bolshimi gradientami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:3 (2002), 395–409 | MR | Zbl

[28] Mazhukin V. I., Samarskii A. A., Chuiko M. M., “Metod dinamicheskoi adaptatsii dlya chislennogo resheniya nestatsionarnykh mnogomernykh zadach Stefana”, Dokl. RAN, 368:3 (1999), 307–310 | MR | Zbl

[29] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Ucheb. posobie dlya vuzov. 3-e izd., dop., Nauka, M., 1992 | MR

[30] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Institut kompternykh issledovanii, Moskva-Izhevsk, 2003

[31] Korolëva O. N., Mazhukin V. I., “Matematicheskoe modelirovanie lazernogo plavleniya i ispareniya mnogosloinykh materialov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:5 (2006), 887–901 | MR

[32] Henrick A. K., Aslam T. D., Powers J. M., “Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points”, Journal of Computational Physics, 207 (2005), 542–567 | DOI | Zbl