Modeling of t cell population development and estimation of resource allocation effectiveness
Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 25-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the mathematical model of age-related changes in population of peripheral T cells (Romanyukha, Yashin, 2001) is used to describe immune life history during all postnatal life, including childhood. The treatise is based on the assumption of linear dependence of antigenic load from basal metabolic rate, which, in turn, depends on body mass following the allometric relationship — 3/4 power scaling law (Kleiber, 1932; West, Brown, 2005). Energy cost of infection burden, i.e. the energy needed to produce and maintain immune cells plus the energy loss during infectious diseases, is estimated and used as a measure of immune system effectiveness. The dependence of optimal resource allocation from the parameters of infection burden is studied.
@article{MM_2007_19_11_a3,
     author = {S. G. Rudnev and A. A. Romanyukha and A. I. Yashin},
     title = {Modeling of t cell population development and estimation of resource allocation effectiveness},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--42},
     publisher = {mathdoc},
     volume = {19},
     number = {11},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_11_a3/}
}
TY  - JOUR
AU  - S. G. Rudnev
AU  - A. A. Romanyukha
AU  - A. I. Yashin
TI  - Modeling of t cell population development and estimation of resource allocation effectiveness
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 25
EP  - 42
VL  - 19
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_11_a3/
LA  - ru
ID  - MM_2007_19_11_a3
ER  - 
%0 Journal Article
%A S. G. Rudnev
%A A. A. Romanyukha
%A A. I. Yashin
%T Modeling of t cell population development and estimation of resource allocation effectiveness
%J Matematičeskoe modelirovanie
%D 2007
%P 25-42
%V 19
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_11_a3/
%G ru
%F MM_2007_19_11_a3
S. G. Rudnev; A. A. Romanyukha; A. I. Yashin. Modeling of t cell population development and estimation of resource allocation effectiveness. Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 25-42. http://geodesic.mathdoc.fr/item/MM_2007_19_11_a3/

[1] Bondarenko N. I., Kaplan M. A., “Izuchenie sostava tela zdorovogo cheloveka posredstvom opredeleniya kletochnoi i vnekletochnoi massy po kaliyu-40 metodom radiometrii vsego tela”, Vopr. antropol., 1978, no. 59, 48–57

[2] Marchuk G. I., Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991 | MR

[3] Marchuk G. I., Romanyukha A. A., Bocharov G. A., “Matematicheskoe modelirovanie protivovirusnogo immunnogo otveta pri virusnom gepatite”, Matematicheskie problemy kibernetiki, Nauka, M., 1989, 5–70 | MR

[4] Petrov R. V., Immunologiya, Meditsina, M., 1987

[5] Roit A., Brostoff Dzh., Meil D., Immunologiya, Mir, M., 2000

[6] Romanyukha A. A., Rudnev S. G., “Variatsionnyi printsip v issledovanii protivoinfektsionnogo immuniteta na primere pnevmonii”, Matem. modelirovanie, 13:8 (2001), 65–84 | Zbl

[7] Romanyukha A. A., Yashin A. I., “Matematicheskaya model vozrastnykh izmenenii v populyatsii perifericheskikh $T$-limfotsitov”, Uspekhi gerontologii, 2001, no. 8, 58–69

[8] Sapin M. R., Etingen L. E., Immunnaya sistema cheloveka, Meditsina, M., 1996

[9] Yasinskii A. A., Kotova E. A., Shtinova T. T., Infektsionnaya zabolevaemost v Rossiiskoi Federatsii v 2003–2004 gg., Iinformatsionnyi sbornik statisticheskikh i analiticheskikh materialov, Federalnyi tsentr gosudarstvennogo sanitarno-epidemiologicheskogo nadzora, M., 2005

[10] Arpadi S. M., Cuff P. A., Kotler D. P., Wang J., Bamji M., Lange M., Pierson R. N., Matthews D. E., “Growth velocity, fat-free mass and energy intake are inversely related to viral load in HIV-infected children”, J. Nutr., 130 (2000), 2498–2502

[11] Berzins S. P., Boyd R. L., Miller J. F. A. P., “The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool”, J. Exp. Med., 187:11 (1998), 1839–1848 | DOI

[12] Burnet F., The clonal selection theory of acquired immunity, University Press, Cambridge, 1959

[13] Calle E. E., Thun M. J., Petrelli J. M., Rodriguez C., Heath C. W., N. Engl. J. Med., 341:15 (1999), 1097–1105 | DOI

[14] Effros R. B., “Replicative senescence in the immune system: impact of the Hayflick limit on $T$-cell function in the elderly”, Amer. J. Hum. Genet., 62 (1998), 1003–1007 | DOI

[15] Goronzy J. J., Fullbright J. W., Crowson C. S., Poland G.A., O'Fallon W. M., Weyand C. M., “Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals”, J. Virol., 75:24 (2001), 12182–12187 | DOI

[16] Hakim F. T., Memon S. A., Cepeda R., Jones E. C., Chow C. K. Kasten-Sportes C., Odom J., Vance B. A., Christensen B. L., Mackall C. L., Gress R. E., “Age-dependent incidence, time course, and consequences of thymic renewal in adults”, J. Clin. Invest., 115:4 (2005), 930–939

[17] Hayward A. R., Lee J., Beverley P. C. L., “Ontogeny of expression of UCHL-1 antigen on $TcR-1^+$ (CD4/8) and $TcR\delta^+T$ cells”, Eur. J. Immunol., 19 (1989), 771–773 | DOI

[18] Hulstaert F., Hannet I., Munhyeshuli V., Reichert T., De Bruyere M., Strauss K., “Age-related changes in human blood lymphocyte subpopulations. II. Varying kinetics of percentage and absolute count measurements”, Clin. Immunol. Immunopathol., 70:2 (1994), 152–158 | DOI

[19] Keane R. M., Crawley M. J., “Exotic plant invasions and the enemy release hypothesis”, Trends Ecol. Evol., 17:4 (2002), 164–170 | DOI

[20] Kleiber M., “Body size and metabolism”, Hilgardia, 6 (1932), 315–353

[21] Lee K. A., Klasing K. C., “A role for immunology in invasion biology”, Trends Ecol. Evol., 19:10 (2004), 523–529 | DOI

[22] Long C. L., Schaffel N., Geiger J. W., Schiller W.R., Blackmore W.S., “Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance”, J. Parenter. Enter. Nutr., 3 (1979), 452–456 | DOI

[23] Mackall C. L., Fleisher T. A., Brown M. R. et al., “Age, thymopoiesis, and CD4+ $T$-lymphocyte regeneration after intensive chemotherapy”, N. Engl. J. Med., 332:3 (1995), 143–149 | DOI

[24] MATLAB: The language of technical computing, MathWorks Inc., Natick, MA, 1998

[25] McDade T. W., “Life history theory and the immune system: steps toward a human ecological immunology”, Yrbk Phys. Anthropol., 46 (2003), 100–125 | DOI

[26] Romanyukha A. A., Rudnev S. G., Sidorov I. A., “Energy cost of infection burden: An approach to understanding the dynamics of host-pathogen interactions”, J. Theor. Biol., 241:1 (2006), 1–13 | DOI | MR

[27] Rufer N., Brümmendorf T. H., Kolvraa S. et al., “Telomere fluorescense measurements in granulocytes and $T$ lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory $T$ cells in early childhood”, J. Exp. Med., 190:2 (1999), 157–167 | DOI

[28] Sannikova T. E., Rudnev S. G., Romanyukha A. A., Yashin A.I., “Immune system aging may be affected by HIV infection: Mathematical model of immunosenescence”, Russ. J. Numer. Anal. Math. Modelling, 19:4 (2004), 315–329 | DOI | MR | Zbl

[29] Snyder W. S., Cook M. J., Nasset E. S. et al., Report of the Task Group on Reference Man: ICRP-23, Pergamon Press, NY, 1984

[30] Stearns S. C., The Evolution of Life Histories, Oxford University Press, Oxford, 1992

[31] Steinmann G. G., Klaus B., Müller-Hermelink H. K., “The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study”, Scand. J. Immunol., 22:5 (1985), 563–575 | DOI

[32] Storn R., Price K., “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optimization, 11 (1997), 341–359 | DOI | MR | Zbl

[33] Valentin J., “Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89”, Annals of the ICRP, 32:3–4 (2002), 1–277 | DOI

[34] West J. B., Brown J. H., “The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization”, J. Exp. Biol., 208 (2005), 1575–1592 | DOI

[35] World Health Organization, World Health Report: Changing History, WHO, Geneva, 2004