Scalable algorithm for incompressible flow simulation on parallel computer systems
Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 105-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to application of parallel technologies for modelling of incompressible turbulent flows using fine meshes and high-order numerical schemes. Main effort is focused on efficient solution of the Poisson equation which arises from the mass-conservation equation. The Poisson operator representing physical features of the incompressible flow has an infinite speed of propagation of information in the spatial domain and this leads to serious obstacles for the parallelization. For this reason efficient solution of the Poisson equation on a parallel system is of first priority. A flexible and scalable algorithm represented in this paper can be efficiently used on both supercomputers and low-cost clusters. Algorithm is based on combination of tree methods: Fourier decomposition, Direct Schur method and conjugated gradient method. Parallel performance was demonstrated on both typical low-cost cluster and Marenostrum supercomputer of the Barcelona Supercomputing Center. An application of the algorithm for a large direct numerical simulation on 512 processors is also described.
@article{MM_2007_19_10_a8,
     author = {A. V. Gorobets},
     title = {Scalable algorithm for incompressible flow simulation on parallel computer systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--128},
     publisher = {mathdoc},
     volume = {19},
     number = {10},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_10_a8/}
}
TY  - JOUR
AU  - A. V. Gorobets
TI  - Scalable algorithm for incompressible flow simulation on parallel computer systems
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 105
EP  - 128
VL  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_10_a8/
LA  - ru
ID  - MM_2007_19_10_a8
ER  - 
%0 Journal Article
%A A. V. Gorobets
%T Scalable algorithm for incompressible flow simulation on parallel computer systems
%J Matematičeskoe modelirovanie
%D 2007
%P 105-128
%V 19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_10_a8/
%G ru
%F MM_2007_19_10_a8
A. V. Gorobets. Scalable algorithm for incompressible flow simulation on parallel computer systems. Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 105-128. http://geodesic.mathdoc.fr/item/MM_2007_19_10_a8/

[1] R. P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994

[2] William L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987 | MR

[3] A. Brandt, B. Diskin, “Multigrid solvers on decomposed domains”, Domain Decomposition Methods in Science and Engineering, Contemp. Math. American Math. Soc., 157, eds. A. Quarteoni, J. Periaux, Yu. A. Kuznetsov, O. Wildlund, 1994, 135–155 | MR | Zbl

[4] Y. F. Hu, D. R. Emerson, R. J. Blake, “The Communication Performance of the Cray T3D and its Effect on Iterative Solvers”, Parallel Computing, 22 (1993), 22–32

[5] H. A. Van Der Vorst, “Parallel Linear Systems Solvers: Sparse Iterative Methods”, High Performance Computing in Fluid Dynamics, ed. P. Wesseling, Kluwer, Dordrecht, The Netherlands, 1996, 173–200

[6] T. G. Elizarova, O. Yu. Milyukova, “Chislennoe modelirovanie techenii vyazkoi neszhimaemoi zhidkosti v kubicheskoi kaverne”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 43:3 (2003), 453–466 | MR | Zbl

[7] I. A. Shirokov, “Reshenie uravnenii Puassona na mnogoprotsessornoi sisteme v zadachakh modelirovaniya techenii neszhimaemoi zhidkosti”, Diff. uravneniya, 39:7 (2003), 993–1000 | MR

[8] A. Matrone, E. Bucchigniani, F. Stella, “Parallel Polynomial Preconditioners for the Analysis of Chaotic Flows in Rayleigh-Benard Convection”, Parallel Computational Fluid Dynamics: Practice and Theory, eds. D. Keyes et al., Elsevier Publishing, 2000, 139–145

[9] J. Frank, C. Vuik, F. J. Vermolen, “Parallel Deflated Krylov Methods for Incompressible Flow”, Parallel Computational Fluid Dynamics: Practice and Theory, Elsevier Publishing, 2002, 381–388 | MR

[10] E. Oran Brighman, The Fast Fourier Transform and Its Applications, Prentice-Hall, Inc., 1988

[11] Yukio Kaneda, Mitsuo Yokokawa, “DNS of Canonical Turbulence with up to 40963 Grid Points”, Parallel Computational Fluid Dynamics, Elsevier, 2004, 23–32

[12] M. Soria, C. D. Perez-Segsrra, A. Oliva, “A Direct Parallel Algorithm for the Efficient Solution of the Pressure-Correction Equation of Incompressible Flow Problems Using Loosely Coupled Computers”, Numerical Heat Transfer, Part B, 41 (2002), 117–138 | DOI

[13] M. Soria, C. D. Perez-Segsrra, A. Oliva, “A Direct Schur-Fourier Decomposition for the Solution of the Three-Dimensional Poisson Equation of Incompressible Flow Problems Using Loosely Parallel Computers”, Numerical Heat Transfer, Part B, 43 (2003), 467–488 | DOI

[14] F. X. Trias, M. Soria, C. D. Perez-Segsrra, A. Oliva, “A Direct Schur-Fourier Decomposition for the Efficient Solution of High-Order Poisson Equations on Loosely Coupled Parallel Computers”, Numerical Linear Algebra with Appliications, 2005, published online

[15] Alexandre Joel Chorin, “Numerical Solution of the Navier–Stokes Equations”, Journal of Computational Physics, 22 (1968), 745–762 | MR | Zbl

[16] N. N. Yanenko, The Method of Fractional Steps, Springer-Verlag, 1971 | MR | Zbl

[17] A. J. Chorin, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, 1993 | Zbl

[18] William D. Henshaw, “A Fourth-Order Accurate Method for the Incompressible Navier–Stokes Equations on Overlapping Grids”, Journal of Computational Physics, 113:1 (1994), 13–25 | DOI | MR | Zbl

[19] N. Anders Petersson, “Stability of Pressure Boundary Conditions for Stokes and Navier–Stokes Equations”, Journal of Computational Physics, 172 (2001), 40–70 | DOI | MR | Zbl

[20] J. Kim, P. Moin, “Application of a Fractional-Step Method to Incompressible Navier–Stokes Equations”, Journal of Physics, 123 (1985), 308–328 | MR

[21] S. Xin, P. Le Quere, “Direct numerical simulations of two-dimensional chaotic natural convection in a differentially heated cavity of aspect ratio 4”, Journal of Fluid Mechanics, 304 (1995), 87–118 | DOI | Zbl

[22] M. Soria, F. X. Trias, C. D. Perez-Segsrra, A. Oliva, “Direct numerical simulations of thee-dimensional natural-convection flow in a differentially cavity of aspect ratio 4”, Numerical Heat Transfer, part A, 45 (2004), 649–673 | DOI

[23] R. W. C. P. Verstappen, A. E. P. Veldman, “Symmetry-Preserving Discretization of Turbulent Flow.”, Journal of Computational Physics, 187 (2003), 343–368 | DOI | MR | Zbl

[24] R. W. C. P. Verstappen, A. E. P. Veldman, “Direct Numerical simulation of turbulence at lower costs”, Journal of Engineering Mathematics, 32 (1997), 143–159 | DOI | MR | Zbl

[25] R. W. C. P. Verstappen, A. E. P. Veldman, “Spectro-consistent discretization of Navier–Stokes a challenge to RANS and LES”, Journal of Engineering Mathematics, 34 (1998), 163–179 | DOI | Zbl

[26] R. W. Hockney, “A Fast Direct Solution of Poisson's Equation Using Fourier Analysis”, Journal of the Association for Computing Machinery, 12 (1965), 95–113 | MR | Zbl

[27] P. N. Swarztrauber, “The Methods of Cyclic Reduction, Fourier Analysis and the FACR Algorithm for the Discrete Solution of Poisson's Equation on a Rectangle”, SIAM Rew., 19 (1977), 490–501 | DOI | MR | Zbl

[28] Robert W. Ramirez, The FFT, Fundamentals and Concepts, Prentice-Hall, Inc., 1985 | MR

[29] Yousef Saad, Iterative Methods for Sparse Linear Systems, 2000

[30] F. X. Trias, M. Soria, C. D. Perez-Segsrra, A. Oliva, “Direct Numerical Simulation of Turbulent Flows on a low cost PC Cluster”, Parallel Computational Fluid Dynamics, Elsevier, 2005

[31] P. J. Davis, Circulant Matrices, Chelsea Publishing, New York, 1994 | Zbl