Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_10_a8, author = {A. V. Gorobets}, title = {Scalable algorithm for incompressible flow simulation on parallel computer systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {105--128}, publisher = {mathdoc}, volume = {19}, number = {10}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_10_a8/} }
A. V. Gorobets. Scalable algorithm for incompressible flow simulation on parallel computer systems. Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 105-128. http://geodesic.mathdoc.fr/item/MM_2007_19_10_a8/
[1] R. P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994
[2] William L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987 | MR
[3] A. Brandt, B. Diskin, “Multigrid solvers on decomposed domains”, Domain Decomposition Methods in Science and Engineering, Contemp. Math. American Math. Soc., 157, eds. A. Quarteoni, J. Periaux, Yu. A. Kuznetsov, O. Wildlund, 1994, 135–155 | MR | Zbl
[4] Y. F. Hu, D. R. Emerson, R. J. Blake, “The Communication Performance of the Cray T3D and its Effect on Iterative Solvers”, Parallel Computing, 22 (1993), 22–32
[5] H. A. Van Der Vorst, “Parallel Linear Systems Solvers: Sparse Iterative Methods”, High Performance Computing in Fluid Dynamics, ed. P. Wesseling, Kluwer, Dordrecht, The Netherlands, 1996, 173–200
[6] T. G. Elizarova, O. Yu. Milyukova, “Chislennoe modelirovanie techenii vyazkoi neszhimaemoi zhidkosti v kubicheskoi kaverne”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 43:3 (2003), 453–466 | MR | Zbl
[7] I. A. Shirokov, “Reshenie uravnenii Puassona na mnogoprotsessornoi sisteme v zadachakh modelirovaniya techenii neszhimaemoi zhidkosti”, Diff. uravneniya, 39:7 (2003), 993–1000 | MR
[8] A. Matrone, E. Bucchigniani, F. Stella, “Parallel Polynomial Preconditioners for the Analysis of Chaotic Flows in Rayleigh-Benard Convection”, Parallel Computational Fluid Dynamics: Practice and Theory, eds. D. Keyes et al., Elsevier Publishing, 2000, 139–145
[9] J. Frank, C. Vuik, F. J. Vermolen, “Parallel Deflated Krylov Methods for Incompressible Flow”, Parallel Computational Fluid Dynamics: Practice and Theory, Elsevier Publishing, 2002, 381–388 | MR
[10] E. Oran Brighman, The Fast Fourier Transform and Its Applications, Prentice-Hall, Inc., 1988
[11] Yukio Kaneda, Mitsuo Yokokawa, “DNS of Canonical Turbulence with up to 40963 Grid Points”, Parallel Computational Fluid Dynamics, Elsevier, 2004, 23–32
[12] M. Soria, C. D. Perez-Segsrra, A. Oliva, “A Direct Parallel Algorithm for the Efficient Solution of the Pressure-Correction Equation of Incompressible Flow Problems Using Loosely Coupled Computers”, Numerical Heat Transfer, Part B, 41 (2002), 117–138 | DOI
[13] M. Soria, C. D. Perez-Segsrra, A. Oliva, “A Direct Schur-Fourier Decomposition for the Solution of the Three-Dimensional Poisson Equation of Incompressible Flow Problems Using Loosely Parallel Computers”, Numerical Heat Transfer, Part B, 43 (2003), 467–488 | DOI
[14] F. X. Trias, M. Soria, C. D. Perez-Segsrra, A. Oliva, “A Direct Schur-Fourier Decomposition for the Efficient Solution of High-Order Poisson Equations on Loosely Coupled Parallel Computers”, Numerical Linear Algebra with Appliications, 2005, published online
[15] Alexandre Joel Chorin, “Numerical Solution of the Navier–Stokes Equations”, Journal of Computational Physics, 22 (1968), 745–762 | MR | Zbl
[16] N. N. Yanenko, The Method of Fractional Steps, Springer-Verlag, 1971 | MR | Zbl
[17] A. J. Chorin, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, 1993 | Zbl
[18] William D. Henshaw, “A Fourth-Order Accurate Method for the Incompressible Navier–Stokes Equations on Overlapping Grids”, Journal of Computational Physics, 113:1 (1994), 13–25 | DOI | MR | Zbl
[19] N. Anders Petersson, “Stability of Pressure Boundary Conditions for Stokes and Navier–Stokes Equations”, Journal of Computational Physics, 172 (2001), 40–70 | DOI | MR | Zbl
[20] J. Kim, P. Moin, “Application of a Fractional-Step Method to Incompressible Navier–Stokes Equations”, Journal of Physics, 123 (1985), 308–328 | MR
[21] S. Xin, P. Le Quere, “Direct numerical simulations of two-dimensional chaotic natural convection in a differentially heated cavity of aspect ratio 4”, Journal of Fluid Mechanics, 304 (1995), 87–118 | DOI | Zbl
[22] M. Soria, F. X. Trias, C. D. Perez-Segsrra, A. Oliva, “Direct numerical simulations of thee-dimensional natural-convection flow in a differentially cavity of aspect ratio 4”, Numerical Heat Transfer, part A, 45 (2004), 649–673 | DOI
[23] R. W. C. P. Verstappen, A. E. P. Veldman, “Symmetry-Preserving Discretization of Turbulent Flow.”, Journal of Computational Physics, 187 (2003), 343–368 | DOI | MR | Zbl
[24] R. W. C. P. Verstappen, A. E. P. Veldman, “Direct Numerical simulation of turbulence at lower costs”, Journal of Engineering Mathematics, 32 (1997), 143–159 | DOI | MR | Zbl
[25] R. W. C. P. Verstappen, A. E. P. Veldman, “Spectro-consistent discretization of Navier–Stokes a challenge to RANS and LES”, Journal of Engineering Mathematics, 34 (1998), 163–179 | DOI | Zbl
[26] R. W. Hockney, “A Fast Direct Solution of Poisson's Equation Using Fourier Analysis”, Journal of the Association for Computing Machinery, 12 (1965), 95–113 | MR | Zbl
[27] P. N. Swarztrauber, “The Methods of Cyclic Reduction, Fourier Analysis and the FACR Algorithm for the Discrete Solution of Poisson's Equation on a Rectangle”, SIAM Rew., 19 (1977), 490–501 | DOI | MR | Zbl
[28] Robert W. Ramirez, The FFT, Fundamentals and Concepts, Prentice-Hall, Inc., 1985 | MR
[29] Yousef Saad, Iterative Methods for Sparse Linear Systems, 2000
[30] F. X. Trias, M. Soria, C. D. Perez-Segsrra, A. Oliva, “Direct Numerical Simulation of Turbulent Flows on a low cost PC Cluster”, Parallel Computational Fluid Dynamics, Elsevier, 2005
[31] P. J. Davis, Circulant Matrices, Chelsea Publishing, New York, 1994 | Zbl