Mathematical simulation and numerical solution of radiation therapy planning problems with help of physical and biological objective functions
Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of the paper is creating of algorithm and computer program for effective numerical calculation of optimal tumor radiation intensity profiles with substantial number of port pixels and tumor and risk organs volume voxels. Developed algorithm, using physical objective functions, is based into multicriterion consideration of radiation intensity profile optimization problem and numerical methods for quadratic programming problems solving. Developed algorithm, using biological objective functions, is also based into multicriterion consideration of radiation intensity profile optimization problem and numerical methods for nonlinear programming problems solving. On basis of developed algorithms authors created computer programs which provides optimal tumor radiation intensity profiles calculation with acceptable accuracy for acceptable computation time.
@article{MM_2007_19_10_a5,
     author = {S. G. Klimanov and V. A. Klimanov and A. V. Kryanev},
     title = {Mathematical simulation and numerical solution of radiation therapy planning problems with help of physical and biological objective functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {19},
     number = {10},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_10_a5/}
}
TY  - JOUR
AU  - S. G. Klimanov
AU  - V. A. Klimanov
AU  - A. V. Kryanev
TI  - Mathematical simulation and numerical solution of radiation therapy planning problems with help of physical and biological objective functions
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 67
EP  - 75
VL  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_10_a5/
LA  - ru
ID  - MM_2007_19_10_a5
ER  - 
%0 Journal Article
%A S. G. Klimanov
%A V. A. Klimanov
%A A. V. Kryanev
%T Mathematical simulation and numerical solution of radiation therapy planning problems with help of physical and biological objective functions
%J Matematičeskoe modelirovanie
%D 2007
%P 67-75
%V 19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_10_a5/
%G ru
%F MM_2007_19_10_a5
S. G. Klimanov; V. A. Klimanov; A. V. Kryanev. Mathematical simulation and numerical solution of radiation therapy planning problems with help of physical and biological objective functions. Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 67-75. http://geodesic.mathdoc.fr/item/MM_2007_19_10_a5/

[1] Brahme A., “Treatment optimization using physical and radiobiological objective functions”, Radiation therapy physics, ed. By Smith, Springer, Berlin, 1995, 209–246

[2] Webb S., “Optimization of conformal radiotherapy dose distribution by simulated annealing”, Phys. Med. Biol., 34 (1989), 1349–1370 | DOI

[3] Bulavskii V. A., Zvyagina R. A., Yakovleva M. A., Chislennye metody lineinogo programmirovaniya, Nauka, M., 1977 | MR | Zbl

[4] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[6] Klepper L. Ya., Formirovanie dozovykh polei radioaktivnymi istochnikami izlucheniya, Energoatomizdat, M., 1993

[7] Klimanov V. A., Kryanev A.V., “Postanovka zadach optimizatsii planirovanii luchevoi terapii”, Meditsinskaya fizika, 2000, no. 7, 34–42

[8] Klimanov V. A., Kryanev A. V. Rubinsky D. A., “Numeric Solution for Radiation Therapy Dose Planning Optimization Problem Based on the Pencil Beam Algorithm and Large-Scaled Elements Method”, Physica Medica, 15 (1999), 166

[9] Klimanov V. A., Kryanev A. V. Rubinsky D. A., Radiation therapy dose planning optimization based on the pencil beam algorithm and large-scaled elements method, Third “Medical Physics-97” International Conference meeting reports theses. Obninsk. 1997

[10] Yu. Y., “Multiobjective decision theory for computational optimization in radiation therapy”, Med. Phys., 24(9) (1997), 1445–1454 | DOI

[11] Kryanev A. V., Lukin G. V., Matematicheskie metody obrabotki neopredelennykh dannykh, Nauka, M., 2003

[12] Podinovskii V. V., Nogin V. D., Pareto optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR | Zbl

[13] Kryanev A. V., Chernyi A. I., “Chislennye resheniya optimizatsionnykh zadach dlya matematicheskikh modelei teorii investitsii”, Matem. modelirovanie, 8:8 (1996), 97–103 | MR | Zbl

[14] Vorobev V. I., Gribunin V. G., Teoriya i praktika veivlet-preobrazovanii, Izd. VUS, S.-Peterburg, 1999

[15] Gaidyshev I. P., “Analiz i obrabotka dannykh”, Spetsialnyi spravochnik, 2001, 327–335

[16] Dobeshi I., Desyat lektsii po veivletam, RKhD, M., 2001

[17] Dyuran B., Odell P., Klasternyi analiz, Statistika, M., 1976

[18] Niemierko A., Urie M., “Goitein M. Optimization of 3D radiation with both physical and biological end points and constraines”, Int. J. Radiat. Oncol. Biol. Phys., 23 (1992), 99–108

[19] Wang X., Mohan R., Jackson A., Leibel S. A., Fuks Z., Ling C. C., “Optimization of insenty-modulated 3D con-formal treatment plans based on biological indices”, Radioth. Oncol., 37 (1995), 140–152 | DOI