Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_9_a10, author = {Yu. I. Vinogradov and V. I. Petrov}, title = {High-performance methods for investigation stress concentration in shells using mathematical models of their deformation mechanics and reduction of the boundary problem to the problem with initial conditions}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {121--128}, publisher = {mathdoc}, volume = {18}, number = {9}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_9_a10/} }
TY - JOUR AU - Yu. I. Vinogradov AU - V. I. Petrov TI - High-performance methods for investigation stress concentration in shells using mathematical models of their deformation mechanics and reduction of the boundary problem to the problem with initial conditions JO - Matematičeskoe modelirovanie PY - 2006 SP - 121 EP - 128 VL - 18 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2006_18_9_a10/ LA - ru ID - MM_2006_18_9_a10 ER -
%0 Journal Article %A Yu. I. Vinogradov %A V. I. Petrov %T High-performance methods for investigation stress concentration in shells using mathematical models of their deformation mechanics and reduction of the boundary problem to the problem with initial conditions %J Matematičeskoe modelirovanie %D 2006 %P 121-128 %V 18 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2006_18_9_a10/ %G ru %F MM_2006_18_9_a10
Yu. I. Vinogradov; V. I. Petrov. High-performance methods for investigation stress concentration in shells using mathematical models of their deformation mechanics and reduction of the boundary problem to the problem with initial conditions. Matematičeskoe modelirovanie, Tome 18 (2006) no. 9, pp. 121-128. http://geodesic.mathdoc.fr/item/MM_2006_18_9_a10/
[1] Vinogradov Yu. I., “Metody vychislenii i postroenie algoritmov resheniya kraevykh zadach stroitelnoi mekhaniki”, Dokl. AN SSSR, 298:2 (1988), 308–313 | Zbl
[2] Vinogradov A. Yu, Vinogradov A. I., “Metod perenosa kraevykh uslovii funktsiyami Koshi–Krylova dlya zhestkikh lineinykh obyknovennykh differentsialnykh uravnenii”, Dokl. RAN, 375:3, 331–333
[3] Steklov V. A., Osnovy teorii integrirovaniya obyknovennykh differentsialnykh uravnenii, gos. izd., M., 1927
[4] Vlasov V. Z., Izbrannye trudy, AN SSSR, M., 1962 | Zbl
[5] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR