Practical use of parallel computing for numerical simulation of interaction between air laser plasma and a surface
Matematičeskoe modelirovanie, Tome 18 (2006) no. 8, pp. 12-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional axisymmetric computational model is developed to describe propagation of laser induced plasma and its interaction with a surface. The model is intended for calculation of momentum coupling coefficient. Parallel computing was carried out on cluster created in Radiative Gas Dynamics Laboratory of IPMech RAS. The results of the numerical calculations for different initial conditions and forms of the surface are presented. The calculated values of momentum coupling coefficient are close to experimentally measured ones in Japan and the USSR. Essential features of the developed parallel algorithm are discussed. An investigation of the parallel speed-up got on the cluster and efficiency of the used algorithm were performed.
@article{MM_2006_18_8_a2,
     author = {I. V. Sharikov and D. M. Khrupov and S. T. Surzhikov},
     title = {Practical use of parallel computing for numerical simulation of interaction between air laser plasma and a surface},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {12--24},
     publisher = {mathdoc},
     volume = {18},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_8_a2/}
}
TY  - JOUR
AU  - I. V. Sharikov
AU  - D. M. Khrupov
AU  - S. T. Surzhikov
TI  - Practical use of parallel computing for numerical simulation of interaction between air laser plasma and a surface
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 12
EP  - 24
VL  - 18
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_8_a2/
LA  - ru
ID  - MM_2006_18_8_a2
ER  - 
%0 Journal Article
%A I. V. Sharikov
%A D. M. Khrupov
%A S. T. Surzhikov
%T Practical use of parallel computing for numerical simulation of interaction between air laser plasma and a surface
%J Matematičeskoe modelirovanie
%D 2006
%P 12-24
%V 18
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_8_a2/
%G ru
%F MM_2006_18_8_a2
I. V. Sharikov; D. M. Khrupov; S. T. Surzhikov. Practical use of parallel computing for numerical simulation of interaction between air laser plasma and a surface. Matematičeskoe modelirovanie, Tome 18 (2006) no. 8, pp. 12-24. http://geodesic.mathdoc.fr/item/MM_2006_18_8_a2/

[1] Kantrovitz A., “Propulsion to Orbit by Ground-Based Lasers”, Astronautics and Aeronautics, 10:5 (1972), 74–76

[2] Pirri A. N., Schlier R., Northam D., “Momentum Transfer and Plasma Formation above a Surface with a High-Power $\mathrm{CO}_2$ Laser”, Applied Physics Letters, 21:3 (1972), 79–81 | DOI

[3] Pirri A. N., Monsler M. J., Nebolsine P. E., “Propulsion by Absorption of Laser Radiation”, AIAA Journal, 12:9 (1974), 1254–1261 | DOI

[4] Ageev V. P., Barchukov A. I., Bunkin F. V., Konov V. I., Silenok A. S., Chapliev N. I., “Eksperimentalnoe modelirovanie lazernogo vozdushno-reaktivnogo dvigatelya (LVRD)”, Pisma v ZhTF, 2:22 (1976), 1032–1035

[5] Ageev V. P., Barchukov A. I., Bunkin F. V., Konov V. I., Prokhorov A. M., Silenok A. S., Chapliev N. I., “Lazernyi vozdushno-reaktivnyi dvigatel”, Kvantovaya elektronika, 4:12 (1977), 2501–2513

[6] Bunkin F. V., Prokhorov A. M., “Ispolzovanie lazernogo istochnika energii dlya sozdaniya reaktivnoi tyagi”, UFN, 119:3 (1976), 425–446

[7] Messitt D. G., Myrabo L. N., Mead F. B., “Laser Initiated Blast Wave For Launch Vehicle Propulsion”, AIAA, 2000, 3035

[8] Mead F. B., Myrabo L. N., Messitt D. G., “Flight and Ground Tests of a Laser-Boosted Vehicle”, AIAA, 1998, 3735

[9] Myrabo L. N., Messitt D. G., Mead F. B., “Ground and Flight Tests of a Laser Propelled Vehicle”, AIAA, 1998, 1001

[10] Wang T.-S., Chen Y.-S., Liu J., Myrabo L. N., Mead F. B., “Advanced Performance Modeling of Experimental Laser Lightcraft”, Journal of Propulsion and Power, 18:6 (2002), 1129–1138 | DOI

[11] Mori K., Komurasaki K., Arakawa Y., “Laser Plasma Production and Expansion in a Supersonic Flow”, AIAA, 2002, 0634 | Zbl

[12] Mori K., Komurasaki K., Katsurayama H., Arakawa Y., “Energy Conversion Efficiency of Laser Produced Plasma in a Supersonic Flow”, AIAA, 2003, 3859

[13] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[14] Raizer Yu. P., Fizika gazovogo razryada, Nauka, M., 1987

[15] Sharikov I. V., Surzhikov S. T., Ispolzovanie realizatsii MPICH tekhnologii parallelnykh vychislenii MPI pri chislennom modelirovanii vzaimodeistviya razletayuscheisya lazernoi plazmy s poverkhnostyu, Preprint No 783, Institut problem mekhaniki RAN, M., 2005

[16] Sharikov I. V., Surzhikov S. T., Chislennoe modelirovanie vzaimodeistviya vozdushnoi lazernoi plazmy s poverkhnostyu, Preprint No 782, Institut problem mekhaniki RAN, M., 2005