Modelling of hydraulic fracture in poroelastic medium
Matematičeskoe modelirovanie, Tome 18 (2006) no. 6, pp. 53-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

At present the hydraulic fracture is the most effective and frequently used method. The modeling of this process is a serious problem and is very important for prognostication the operation efficiency. Calculation of local stressed state of porous media and liquid flows is necessary for the design hydraulic fracture. In this article the set of processes in the saturated porous media is considered according to the quasi-stationary Biot model, and the Coulomb–More criterion used for modeling the crack evolution. The geological medium is essentially non-homogeneous. The non-orthogonal and multiblock grids adapted to the formation structure are used and the support operator method is developed for the approximation of the Biot equations.
@article{MM_2006_18_6_a4,
     author = {T. T. Garipov},
     title = {Modelling of hydraulic fracture in poroelastic medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--69},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_6_a4/}
}
TY  - JOUR
AU  - T. T. Garipov
TI  - Modelling of hydraulic fracture in poroelastic medium
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 53
EP  - 69
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_6_a4/
LA  - ru
ID  - MM_2006_18_6_a4
ER  - 
%0 Journal Article
%A T. T. Garipov
%T Modelling of hydraulic fracture in poroelastic medium
%J Matematičeskoe modelirovanie
%D 2006
%P 53-69
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_6_a4/
%G ru
%F MM_2006_18_6_a4
T. T. Garipov. Modelling of hydraulic fracture in poroelastic medium. Matematičeskoe modelirovanie, Tome 18 (2006) no. 6, pp. 53-69. http://geodesic.mathdoc.fr/item/MM_2006_18_6_a4/

[1] S. V. Konstantinov, V. I. Gusev, Tekhnika i tekhnologiya provedeniya gidravlicheskogo razryva plastov za rubezhom, VNIIOENG, Neftepromyslovoe delo, Obzornaya informatsiya, 1985

[2] A. A. Griffth, The phenomenon of rupture and flow of solids, Philosophical Transaction of the Royal Society of London, 221, 1920

[3] G. R. Irwin, “Analysis of stresses and strain near the end of crack traversing a plate”, Journal of Applied Mechanics, 24:3 (1957)

[4] G. R. Irwin, Fracture, Springer Encyclopedia of Phisics, 6, 1958 | MR

[5] A. F. Zazovskii, F. V. Lemekha, R. P. Fedorenko, Nelineinye effekty pri tsirkulyatsii zhidkosti v treschine gidrorazryva, Preprint IPM No 210, 1987

[6] M. A. Biot, “Mechanics of deformation and acoustic propagation”, Journal of Applied Physics, 33:4 (1962) | DOI | MR | Zbl

[7] G. I. Barenblatt, “Matematicheskaya teoriya ravnovesnykh treschin, obrazuyuschikhsya pri khrupkom razrushenii”, Zhurnal prikladnoi matematiki i tekhnicheskoi fiziki, 1961, no. 4

[8] Yu. P. Zheltov, S. A. Khristianovich, “O mekhanizme gidravlicheskogo razryva neftenosnogo plasta”, Izvestiya AN SSSR, OTN, 1955, no. 5

[9] Yu. P. Zheltov, “Ob obrazovanii vertikalnykh treschin v plaste pri pomoschi filtruyuscheisya zhidkosti”, Izvestiya AN SSSR, OTN, 1955, no. 5

[10] N. I. Muskhelishvilli, Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966

[11] G. V. Kolosov, “Primenenie kompleksnoi peremennoi v teorii uprugosti”, ONTI, 1935

[12] L. I. Sedov, Ploskie zadachi gidrodinamiki i aerodinamiki, M., 1950

[13] A. A. Samarskii, A. V. Koldoba, Yu. A. Poveschenko, V. V. Tishkin, Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996

[14] V. P. Myasnikov, M. Yu. Zaslavskii, A. Kh. Pergament, “Algoritmy osredneniya dlya resheniya zadach teorii uprugosti na pryamougolnykh setkakh, neadaptirovannykh k strukture sredy (averaging)”, Doklady Akademii Nauk, 394:3 (2004) | MR

[15] V. P. Myasnikov, M. Yu. Zaslavskii, A. Kh. Pergament, “Algoritmy osredneniya i metod opornykh operatorov v zadachakh porouprugosti”, Doklady Akademii Nauk, 397:5 (2004), 622

[16] T. T. Garipov, M. Yu. Zaslavskii, A. Kh. Pergament, “Matematicheskoe modelirovanie protsessov filtratsii i porouprugosti”, Matematicheskoe modelirovanie, 17:9 (2005), 113–128 | MR | Zbl