Nash equilibrium in environmental problems
Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 73-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamic game model of bioresource management problem (fish catching) is considered. The center (state), which determines a share of prohibited for catching (reserved) area of a reservoir, and the players (fishing firms), which make fish catching are the participants of this game. Each player is independent decision maker, being guided by maximization of the profit of fish sale. In traditional statement center's objective is catch regulation by introduction quotas on fishing. In this paper the center's task is the choice of optimal share of reserved territory for maintenance of stable population development in a reservoir in long-term prospect and possible fishing level's definition, sufficient for demand satisfaction.
@article{MM_2006_18_5_a7,
     author = {V. V. Mazalov and A. N. Rettieva},
     title = {Nash equilibrium in environmental problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--90},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_5_a7/}
}
TY  - JOUR
AU  - V. V. Mazalov
AU  - A. N. Rettieva
TI  - Nash equilibrium in environmental problems
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 73
EP  - 90
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_5_a7/
LA  - ru
ID  - MM_2006_18_5_a7
ER  - 
%0 Journal Article
%A V. V. Mazalov
%A A. N. Rettieva
%T Nash equilibrium in environmental problems
%J Matematičeskoe modelirovanie
%D 2006
%P 73-90
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_5_a7/
%G ru
%F MM_2006_18_5_a7
V. V. Mazalov; A. N. Rettieva. Nash equilibrium in environmental problems. Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 73-90. http://geodesic.mathdoc.fr/item/MM_2006_18_5_a7/

[1] Basar T., Olsder G. J., Dynamic noncooperative game theory, Academic Press, New York, 1982, 515 pp. | MR

[2] Clark C. W., Bioeconomic modelling and fisheries management, Wiley, New York, 1985, 320 pp. | MR | Zbl

[3] Ehtamo H., Hamalainen R. P., “A cooperative incentive equilibrium for a resource management problem”, J. of Economic Dynamics and Control, 17 (1993), 659–678 | DOI | MR | Zbl

[4] Hamalainen R. P., Kaitala V., Haurie A., “Bargaining on whales: A differential game model with Pareto optimal equilibria”, Oper. Res. Letters, 3:1 (1984), 5–11 | DOI | MR

[5] Mazalov V. V., Rettieva A. N., “A fishery game model with age distributed population: reserved territory approach”, Game Theory and Applications, 9 (2003), 56–72

[6] Mazalov V. V., Rettieva A. N., “A fishery game model with migration: reserved territory approach”, Game Theory and Applications, 10 (2004), 97–108

[7] Mazalov V. V., Rettieva A. N., “Ob odnoi zadache upravleniya populyatsiei”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:2 (2002), 293–306

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Izd.3-e, Nauka, M., 1976, 392 pp. | MR | Zbl

[9] Svirezhev Yu. M., Elizarov E. Ya., Matematicheskoe modelirovanie biologicheskikh sistem, Nauka, M., 1972, 160 pp.

[10] Shapiro A. P., Modelirovanie biologicheskikh soobschestv, Vladivostok, 1975, 170 pp.