Nonreflecting boundary conditions and their application
Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of setting artificial boundary conditions at outer boundaries of a computational domain is considered. Discussed is both the general problem of mathematical physics and the case of external subsonic viscous gasflow. Nonreflecting boundary conditions for the one-dimensional Euler equations are implemented to numerical algorithms for modeling external flows, allowing for nonlinearity, twodimensionality, and discretization effects. Computations are performed of low Mach-number flows.
@article{MM_2006_18_5_a5,
     author = {L. W. Dorodnicyn},
     title = {Nonreflecting boundary conditions  and their application},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_5_a5/}
}
TY  - JOUR
AU  - L. W. Dorodnicyn
TI  - Nonreflecting boundary conditions  and their application
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 49
EP  - 62
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_5_a5/
LA  - ru
ID  - MM_2006_18_5_a5
ER  - 
%0 Journal Article
%A L. W. Dorodnicyn
%T Nonreflecting boundary conditions  and their application
%J Matematičeskoe modelirovanie
%D 2006
%P 49-62
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_5_a5/
%G ru
%F MM_2006_18_5_a5
L. W. Dorodnicyn. Nonreflecting boundary conditions  and their application. Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 49-62. http://geodesic.mathdoc.fr/item/MM_2006_18_5_a5/

[1] B. N. Chetverushkin, Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[2] M. B. Giles, “Nonreffecting boundary conditions for Euler equation calculations”, AIAA J., 28:12 (1990), 2050–2058 | DOI

[3] L. V. Dorodnitsyn, “Neotrazhayuschie granichnye usloviya dlya sistem uravnenii gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 522–549 | MR | Zbl

[4] G. W. Hedstrom, “Nonreffecting boundary conditions for nonlinear hyperbolic systems”, J. Comput. Phys., 30:2 (1979), 222–237 | DOI | MR | Zbl

[5] L. V. Dorodnitsyn, “Iskusstvennye granichnye usloviya pri chislennom modelirovanii dozvukovykh techenii gaza”, Zh. vychisl. matem. i matem. fiz., 45:7 (2005), 1251–1278 | MR | Zbl

[6] B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comp., 31:139 (1977), 629–651 | DOI | MR | Zbl

[7] L. N. Trefethen, L. Halpern, “Well-posedness of one-way wave equations and absorbing boundary conditions”, Math. Comp., 47:176 (1986), 421–435 | DOI | MR | Zbl

[8] L. V. Dorodnitsyn, “Neotrazhayuschie granichnye usloviya dlya gazodinamicheskikh zadach v nelineinoi postanovke”, Prikladnaya matematika i informatika, no. 11, MAKS Press, M., 2002, 38–74 | MR

[9] D. H. Rudy, J. C. Strikwerda, “A nonreffecting outflow boundary condition for subsonic Navier-Stokes calculations”, J. Comput. Phys., 36:1 (1980), 55–70 | DOI | MR | Zbl

[10] K. W. Thompson, “Time-dependent boundary conditions for hyperbolic systems”, J. Comput. Phys., 89:2 (1990), 439–461 | DOI | MR | Zbl

[11] L. V. Dorodnitsyn, B. N. Chetverushkin, “Ob odnoi neyavnoi skheme dlya modelirovaniya dozvukovogo techeniya gaza”, Matem. modelirovanie, 9:5 (1997), 108–118 | MR | Zbl

[12] B. N. Chetverushkin, N. G. Churbanova, “Simulation of low Mach number flows using the quasigasdynamic system”, XV Int. Conf. on Chemical Reactors Chemreactor-15, Abstracts, Helsinki, Finland, 2001, 91–93

[13] G. Shlikhting, Teoriya pogranichnogo sloya, Nauka, M., 1974