Study of discontinuity distraction for methods of shock wave calculations
Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 120-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

In numerical modeling of continuum flows with shock waves the discontinuity surface is as usual replaced by transition layer of a finite width (discontinuity distraction) which depends on both the used method and the type of discontinuity. A specified method is proposed to study discontinuity distraction for numerical techniques used to solve the hydrodynamics equations. This method allows to determine the distraction of shock waves of arbitrary intensity. A term “effective distraction” is introduced and distraction and effective distraction for Neumann–Richtmayer, Lax, Godunov and Kuropatenko techniques are studied.
@article{MM_2006_18_3_a9,
     author = {V. F. Kuropatenko and I. R. Makeyeva},
     title = {Study of discontinuity distraction  for methods of shock wave calculations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/}
}
TY  - JOUR
AU  - V. F. Kuropatenko
AU  - I. R. Makeyeva
TI  - Study of discontinuity distraction  for methods of shock wave calculations
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 120
EP  - 128
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/
LA  - ru
ID  - MM_2006_18_3_a9
ER  - 
%0 Journal Article
%A V. F. Kuropatenko
%A I. R. Makeyeva
%T Study of discontinuity distraction  for methods of shock wave calculations
%J Matematičeskoe modelirovanie
%D 2006
%P 120-128
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/
%G ru
%F MM_2006_18_3_a9
V. F. Kuropatenko; I. R. Makeyeva. Study of discontinuity distraction  for methods of shock wave calculations. Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 120-128. http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/

[1] Neumann J., Richtmayer R., “A method for the numerical calculation of hydrodynamical shocks”, J. Appl. Phys., 21:3 (1950), 232–237 | DOI | MR | Zbl

[2] Becker R., “Stosswelle und Detonation”, Z. Phys., 8 (1922), 43–52

[3] Kuropatenko V. F., “O polnoi konservativnosti raznostnykh zakonov sokhraneniya”, Voprosy atomnoi nauki i tekhniki.Seriya: Chislennye metody resheniya zadach matematicheskoi fiziki, 1982, no. 3(11), 3–5

[4] Rozhdestvenskii B. L., Yanenko N. K., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 591 pp. | MR

[5] Lax P. D., “Weak solution of nonlinear hyperbolic equations and their numerical computations”, Comn. Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl

[6] Godunov S. K., “Raznostnyi metod scheta razryvnykh reshenii uravnenii gazodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[7] Kuropatenko V. F., “Metod rascheta udarnykh voln”, DAN SSSR, 3:4 (1960), 771 | MR