Study of discontinuity distraction for methods of shock wave calculations
Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 120-128

Voir la notice de l'article provenant de la source Math-Net.Ru

In numerical modeling of continuum flows with shock waves the discontinuity surface is as usual replaced by transition layer of a finite width (discontinuity distraction) which depends on both the used method and the type of discontinuity. A specified method is proposed to study discontinuity distraction for numerical techniques used to solve the hydrodynamics equations. This method allows to determine the distraction of shock waves of arbitrary intensity. A term “effective distraction” is introduced and distraction and effective distraction for Neumann–Richtmayer, Lax, Godunov and Kuropatenko techniques are studied.
@article{MM_2006_18_3_a9,
     author = {V. F. Kuropatenko and I. R. Makeyeva},
     title = {Study of discontinuity distraction  for methods of shock wave calculations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/}
}
TY  - JOUR
AU  - V. F. Kuropatenko
AU  - I. R. Makeyeva
TI  - Study of discontinuity distraction  for methods of shock wave calculations
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 120
EP  - 128
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/
LA  - ru
ID  - MM_2006_18_3_a9
ER  - 
%0 Journal Article
%A V. F. Kuropatenko
%A I. R. Makeyeva
%T Study of discontinuity distraction  for methods of shock wave calculations
%J Matematičeskoe modelirovanie
%D 2006
%P 120-128
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/
%G ru
%F MM_2006_18_3_a9
V. F. Kuropatenko; I. R. Makeyeva. Study of discontinuity distraction  for methods of shock wave calculations. Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 120-128. http://geodesic.mathdoc.fr/item/MM_2006_18_3_a9/