Numerical modeling of separation control by mechanical and jet vortex generators
Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 55-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results are presented of numerical modeling of a turbulent boundary layer interacting with streamwise vortices created by mechanical and jet vortex generators. The computations are performed in the framework of the three-dimensional Reynolds-averaged Navier–Stokes equations with the use of the Spalart–Allmaras turbulence model sensitized to streamline-curvature effects. When modeling the mechanical vortex generators, the approach used is based on their emulation with a specially designed body force introduced in the momentum equation. It is demonstrated that this approach provides satisfactory agreement of the numerical predictions with experiments. For the jet vortex generators, the turbulence model used allows the correct qualitative description of all the details of the flow but predicts the evolution of the vortex in the boundary layer with sufficient accuracy only for a relatively short distance from the section of jet injection (about 10–15 nozzle diameters). Further downstream, it results in a tangible underestimation of the vortex dissipation rate. Based on a NACA0015 airfoil with a deflected flap as an example, the possibility is shown of applying the proposed methodology for optimization of the position of mechanical vortex generators on the airfoil surface. An example is also presented of computing the flow past a vortex generator accounting for its real geometry, which is needed for its optimization and, also, for fine-tuning of the body-force parameters.
@article{MM_2006_18_3_a4,
     author = {A. V. Garbaruk and Ph. R. Spalart and M. Kh. Strelets and A. K. Travin and M. L. Shur},
     title = {Numerical modeling of separation control by mechanical and jet vortex generators},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_3_a4/}
}
TY  - JOUR
AU  - A. V. Garbaruk
AU  - Ph. R. Spalart
AU  - M. Kh. Strelets
AU  - A. K. Travin
AU  - M. L. Shur
TI  - Numerical modeling of separation control by mechanical and jet vortex generators
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 55
EP  - 68
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_3_a4/
LA  - ru
ID  - MM_2006_18_3_a4
ER  - 
%0 Journal Article
%A A. V. Garbaruk
%A Ph. R. Spalart
%A M. Kh. Strelets
%A A. K. Travin
%A M. L. Shur
%T Numerical modeling of separation control by mechanical and jet vortex generators
%J Matematičeskoe modelirovanie
%D 2006
%P 55-68
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_3_a4/
%G ru
%F MM_2006_18_3_a4
A. V. Garbaruk; Ph. R. Spalart; M. Kh. Strelets; A. K. Travin; M. L. Shur. Numerical modeling of separation control by mechanical and jet vortex generators. Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 55-68. http://geodesic.mathdoc.fr/item/MM_2006_18_3_a4/

[1] H. H. Pearcy, “Shock-induced separation and its prevention by design and boundary layer control”, Boundary Layer and Flow Control, Pt. IV, ed. G. V. Lachmann, Pergamon Press, New York, 1961, 1277–1344 | MR

[2] R. W. Westphal, J. K. Eaton, W. R. Pauley, “Interaction between a vortex and a turbulent boundary layer in a streamwise pressure gradient”, Turbulent Shear Flows, eds. F. Durst, B. E. Launder, F. W. Schmidt, J. H Whitelaw, Springer Verlag, New York, 1985, 266–277

[3] W. R. Pauley, J. K. Eaton, “Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer”, AIAA J., 26:7 (1988), 816–823 | DOI

[4] A. Cutler, P. Bradshaw, Vortex/boundary layer interactions, AIAA Paper 88-0083, 1988

[5] W. J. Kim, V. C. Patel, “Influence of streamwise curvature on longitudinal vortices imbedded in turbulent boundary layers”, Computers and Fluids, 23 (1994), 647–673 | DOI | Zbl

[6] J. Liu, U. Piomelli, P. R. Spalart, “Interaction between a spatially growing turbulent boundary layer and embedded streamwise vortices”, J.Fluid Mech., 326 (1996), 151–179 | DOI | Zbl

[7] J. Liandrat, B. Aupoix, J. Cousteix, “Calculation of longitudinal vortices embedded in a turbulent boundary layer”, Turbulent Shear Flows, eds. F. Durst, B. E. Launder, F. W. Schmidt, J. H Whitelaw, Springer Verlag, New York, 1985, 253–265

[8] L. Sankaran, D. A. Russell, A numerical study of longitudinal vortex interaction with a boundary layer, AIAA Paper 90-1630, 1990

[9] P. R. Spalart, M. L. Shur, “On the sensitization of simple turbulence models to rotation and curvature”, Aerospace Science and Technology, 1:5 (1997), 297–302 | DOI | Zbl

[10] P. R. Spalart, S. R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439, 1992 | Zbl

[11] F. R. Spalart, M. Kh. Strelets, A. K. Travin, M. L. Shur, “Modelirovanie turbulentnogo vikhrevogo sleda za mekhanizirovannym krylom”, Izv. RAN, Mekhanika zhidkosti i gaza, 2001, no. 5, 64–72 | MR | Zbl

[12] F. R. Spalart, M. Kh. Strelets, A. K. Travin, M. L. Shur, “Modelirovanie vzaimodeistviya vikhrevoi pary s poverkhnostyu Zemli”, Izv. RAN, Mekhanika zhidkosti i gaza, 2001, no. 6, 52–63 | MR | Zbl

[13] M. L. Shur, M. K. Strelets, A. K. Travin, P. R. Spalart, “Turbulence modeling in rotating and curved channels: assessing the Spalart-Shur correction”, AIAA J., 38:5 (2000), 784–792 | DOI

[14] C. L. Rumsey, T. B. Gatski, Isolating curvature effects in computing wall-bounded turbulent flows, AIAA Paper 2001-0725, 2001 | Zbl

[15] S. E. Rogers, D. Kwak, An upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations, AIAA Paper 88-2583-CP, 1988

[16] X. Zhang, “Turbulence measurements of an inclined rectangular jet in a boundary layer”, 4th International Symposium on Engineering Turbulence Modelling and Measurements, eds. W. Rodi, D. Laurence, Elseveir, Amsterdam, 1999, 433–442

[17] X. Zhang, “An inclined rectangular jet in a boundary layer-vortex flow”, Experiments in Fluids, 28:4 (2000), 344–354 | DOI

[18] X. Zhang, A. Rona, Measurements of Contra-Rotating Vortices in A Turbulent Boundary Layer, AIAA Paper 99-0555, 1999

[19] A. Seifert, T. Bachar, D. Koss, M. Shepshelovich, I. Wygnanski, “Oscillatory blowing: a tool to delay boundarylayer separation”, AIAA J., 31:11 (1993), 2052–2060 | DOI