Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_3_a2, author = {N. D. Dikoussar and C. T\"or\"ok}, title = {Automatic knot finding for piecewise-cubic approximation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {23--40}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/} }
N. D. Dikoussar; C. Török. Automatic knot finding for piecewise-cubic approximation. Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 23-40. http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/
[1] Wold S., “Spline Functions in Data Analysis”, Technometrics, 1:1 (1974), 1–11 | DOI | MR | Zbl
[2] Poirier D. J., “Piecewise Regression Using Cubic Splines”, Journal of American Statistical Association, 68:343 (1973), 515–524 | DOI | MR
[3] Hayes J. G., Halliday J., “The Least-squares Fitting of Cubic Spline Surfaces to General Data Sets”, J. Inst. Maths Applics, 14 (1974), 89–103 | DOI | MR | Zbl
[4] Lee E. T. Y., “On Algorithms for Ordinary Least Squares Regression Spline Fitting: A Comparative Study”, J. Statist. Comput. Simul., 72(8) (2002), 647–663 | DOI | MR | Zbl
[5] Walters H. J., “A Newton-Type Method for Computing Best Segment Approximations”, Communications on Pure and Applied Analysis, 3(1) (2004), 133–149 | DOI | MR
[6] Xie H., Qin H., “A Novel Optimization Approach to The Effective Computation of NURBS Knots”, International Journal of Shape Modeling, 7:(2) (December 2001), 199–227 | DOI
[7] Conti C., Morandi R., Rabut C., Sestini A., “Cubic spline data reduction choosing the knots from a third derivative criterion”, Numerical Algorithms, 28 (2001), 45–61 | DOI | MR | Zbl
[8] Sergienko A. B., Tsifrovaya obrabotka signalov, PITER, SPb., 2002
[9] Khardle V., Prikladnaya neparametricheskaya regressiya, Mir, M., 1993 | MR
[10] Friedman J. A, Variable span smoother, Department of Statistics Technical Report LCS5, Stanford University, Stanford, CA, 1984
[11] Dikusar N. D., “Diskretnye proektivnye preobrazovaniya na koordinatnoi ploskosti”, Matematicheskoe modelirovanie, 3:10 (1991), 50–64 | MR
[12] Dikoussar N. D., “Function parametrization by using 4-point transforms”, Computer Physics Communinication, 99 (1997), 235–254 | DOI | Zbl
[13] Dikusar N. D., “Kusochno-kubicheskoe priblizhenie i sglazhivanie krivykh v rezhime adaptatsii”, Soobschenie OIYaI, R10-99-168, Dubna, 1999
[14] Bartenev O. V., Fortran dlya professionalov. Matematicheskaya biblioteka IMSL, Ch.2, Dialog-MIFI, M., 2000
[15] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998
[16] Vazan M. T., Stokhasticheskaya approksimatsiya, Mir, M., 1972 | MR
[17] Torok Ch., Dikusar N. D., “MS.NET komponenty dlya kusochno-kubicheskoi approksimatsii”, Sobschenie OIYaI, R10-2004-202, Dubna, 2004 | Zbl
[18] Török Cs., “Visualization and data analysis in the MS.NET Framework”, JINR Communications, E10-2004-136, Dubna, 2004
[19] Kostenko B. F., Pribis J., Electron thermal capacity in plasma generated at cavitation bubble collapse in D-acetone, Preprint JINR, P11-2004-139, Dubna, 2004
[20] Maple 9 Learning Guide, Maplesoft. Waterloo Maple Inc., Toronto, 2003
[21] Dikusar N. D., Metody 4-tochechnykh preobrazovanii v zadachakh approksimatsii i sglazhivaniya krivykh i poverkhnostei, 10-2002-155, avtoreferat dissertatsii na soiskanie uchenoi stepeni dok. fiz.-mat. nauk, Dubna, 2002