Automatic knot finding for piecewise-cubic approximation
Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 23-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes within the frame of four point transforms a method for piecewise-cubic approximation that detects the knots of the segments in auto-tracking mode. A 3-point cubic parametric spline (TPS) is used as a model of a local approximant. The free parameter $\theta $ (a coefficient at $x^{3}$) is searching using step-by-step averaging. An analytical expression for $\theta $ is received via a length of the segment and values of a function and derivatives that shows the dependence of the $C^{1}$-smoothness on the accuracy of the $\theta$-estimate. The stability of the method w.r.t. input errors is shown as well. The key parameters are: the parameters of the basis functions, the variance of the input errors, and a sampling step. The efficiency of the method is shown by numerical calculations on test examples.
@article{MM_2006_18_3_a2,
     author = {N. D. Dikoussar and C. T\"or\"ok},
     title = {Automatic knot finding for piecewise-cubic approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/}
}
TY  - JOUR
AU  - N. D. Dikoussar
AU  - C. Török
TI  - Automatic knot finding for piecewise-cubic approximation
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 23
EP  - 40
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/
LA  - ru
ID  - MM_2006_18_3_a2
ER  - 
%0 Journal Article
%A N. D. Dikoussar
%A C. Török
%T Automatic knot finding for piecewise-cubic approximation
%J Matematičeskoe modelirovanie
%D 2006
%P 23-40
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/
%G ru
%F MM_2006_18_3_a2
N. D. Dikoussar; C. Török. Automatic knot finding for piecewise-cubic approximation. Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 23-40. http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/