Automatic knot finding for piecewise-cubic approximation
Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 23-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes within the frame of four point transforms a method for piecewise-cubic approximation that detects the knots of the segments in auto-tracking mode. A 3-point cubic parametric spline (TPS) is used as a model of a local approximant. The free parameter $\theta $ (a coefficient at $x^{3}$) is searching using step-by-step averaging. An analytical expression for $\theta $ is received via a length of the segment and values of a function and derivatives that shows the dependence of the $C^{1}$-smoothness on the accuracy of the $\theta$-estimate. The stability of the method w.r.t. input errors is shown as well. The key parameters are: the parameters of the basis functions, the variance of the input errors, and a sampling step. The efficiency of the method is shown by numerical calculations on test examples.
@article{MM_2006_18_3_a2,
     author = {N. D. Dikoussar and C. T\"or\"ok},
     title = {Automatic knot finding for piecewise-cubic approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/}
}
TY  - JOUR
AU  - N. D. Dikoussar
AU  - C. Török
TI  - Automatic knot finding for piecewise-cubic approximation
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 23
EP  - 40
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/
LA  - ru
ID  - MM_2006_18_3_a2
ER  - 
%0 Journal Article
%A N. D. Dikoussar
%A C. Török
%T Automatic knot finding for piecewise-cubic approximation
%J Matematičeskoe modelirovanie
%D 2006
%P 23-40
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/
%G ru
%F MM_2006_18_3_a2
N. D. Dikoussar; C. Török. Automatic knot finding for piecewise-cubic approximation. Matematičeskoe modelirovanie, Tome 18 (2006) no. 3, pp. 23-40. http://geodesic.mathdoc.fr/item/MM_2006_18_3_a2/

[1] Wold S., “Spline Functions in Data Analysis”, Technometrics, 1:1 (1974), 1–11 | DOI | MR | Zbl

[2] Poirier D. J., “Piecewise Regression Using Cubic Splines”, Journal of American Statistical Association, 68:343 (1973), 515–524 | DOI | MR

[3] Hayes J. G., Halliday J., “The Least-squares Fitting of Cubic Spline Surfaces to General Data Sets”, J. Inst. Maths Applics, 14 (1974), 89–103 | DOI | MR | Zbl

[4] Lee E. T. Y., “On Algorithms for Ordinary Least Squares Regression Spline Fitting: A Comparative Study”, J. Statist. Comput. Simul., 72(8) (2002), 647–663 | DOI | MR | Zbl

[5] Walters H. J., “A Newton-Type Method for Computing Best Segment Approximations”, Communications on Pure and Applied Analysis, 3(1) (2004), 133–149 | DOI | MR

[6] Xie H., Qin H., “A Novel Optimization Approach to The Effective Computation of NURBS Knots”, International Journal of Shape Modeling, 7:(2) (December 2001), 199–227 | DOI

[7] Conti C., Morandi R., Rabut C., Sestini A., “Cubic spline data reduction choosing the knots from a third derivative criterion”, Numerical Algorithms, 28 (2001), 45–61 | DOI | MR | Zbl

[8] Sergienko A. B., Tsifrovaya obrabotka signalov, PITER, SPb., 2002

[9] Khardle V., Prikladnaya neparametricheskaya regressiya, Mir, M., 1993 | MR

[10] Friedman J. A, Variable span smoother, Department of Statistics Technical Report LCS5, Stanford University, Stanford, CA, 1984

[11] Dikusar N. D., “Diskretnye proektivnye preobrazovaniya na koordinatnoi ploskosti”, Matematicheskoe modelirovanie, 3:10 (1991), 50–64 | MR

[12] Dikoussar N. D., “Function parametrization by using 4-point transforms”, Computer Physics Communinication, 99 (1997), 235–254 | DOI | Zbl

[13] Dikusar N. D., “Kusochno-kubicheskoe priblizhenie i sglazhivanie krivykh v rezhime adaptatsii”, Soobschenie OIYaI, R10-99-168, Dubna, 1999

[14] Bartenev O. V., Fortran dlya professionalov. Matematicheskaya biblioteka IMSL, Ch.2, Dialog-MIFI, M., 2000

[15] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998

[16] Vazan M. T., Stokhasticheskaya approksimatsiya, Mir, M., 1972 | MR

[17] Torok Ch., Dikusar N. D., “MS.NET komponenty dlya kusochno-kubicheskoi approksimatsii”, Sobschenie OIYaI, R10-2004-202, Dubna, 2004 | Zbl

[18] Török Cs., “Visualization and data analysis in the MS.NET Framework”, JINR Communications, E10-2004-136, Dubna, 2004

[19] Kostenko B. F., Pribis J., Electron thermal capacity in plasma generated at cavitation bubble collapse in D-acetone, Preprint JINR, P11-2004-139, Dubna, 2004

[20] Maple 9 Learning Guide, Maplesoft. Waterloo Maple Inc., Toronto, 2003

[21] Dikusar N. D., Metody 4-tochechnykh preobrazovanii v zadachakh approksimatsii i sglazhivaniya krivykh i poverkhnostei, 10-2002-155, avtoreferat dissertatsii na soiskanie uchenoi stepeni dok. fiz.-mat. nauk, Dubna, 2002