The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues
Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 120-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of restoring a potential in Schrödinger equation through scattering data in considered. The continues analog of theNewton method is studied.
@article{MM_2006_18_2_a9,
     author = {E. P. Zhidkov and O. V. Kozlova},
     title = {The continues analog of the {Newton} method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/}
}
TY  - JOUR
AU  - E. P. Zhidkov
AU  - O. V. Kozlova
TI  - The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 120
EP  - 128
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/
LA  - ru
ID  - MM_2006_18_2_a9
ER  - 
%0 Journal Article
%A E. P. Zhidkov
%A O. V. Kozlova
%T The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues
%J Matematičeskoe modelirovanie
%D 2006
%P 120-128
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/
%G ru
%F MM_2006_18_2_a9
E. P. Zhidkov; O. V. Kozlova. The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues. Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 120-128. http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/