The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues
Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 120-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of restoring a potential in Schrödinger equation through scattering data in considered. The continues analog of theNewton method is studied.
@article{MM_2006_18_2_a9,
     author = {E. P. Zhidkov and O. V. Kozlova},
     title = {The continues analog of the {Newton} method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/}
}
TY  - JOUR
AU  - E. P. Zhidkov
AU  - O. V. Kozlova
TI  - The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 120
EP  - 128
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/
LA  - ru
ID  - MM_2006_18_2_a9
ER  - 
%0 Journal Article
%A E. P. Zhidkov
%A O. V. Kozlova
%T The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues
%J Matematičeskoe modelirovanie
%D 2006
%P 120-128
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/
%G ru
%F MM_2006_18_2_a9
E. P. Zhidkov; O. V. Kozlova. The continues analog of the Newton method in theory scattering inverse problem under presence of eigenfunctions and eigenvalues. Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 120-128. http://geodesic.mathdoc.fr/item/MM_2006_18_2_a9/

[1] Vestnik RUDN. Seriya Prikladnaya i kompyuternaya matematika, 3:1 (2004), 99–105

[2] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, M., 1969

[3] Drukarev G. F., ZhETF, 19:247 (1949)

[4] Babikov V. V., Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[5] Marchenko V. A., Spektralnaya teoriya operatorov Shturma–Liuvilya, Naukova dumka, Kiev, 1972 | MR | Zbl

[6] Lundina D. Sh., Marchenko V. A., Mat. sb., 78(120):4 (1969), 475–484 | MR | Zbl

[7] Gavurin M. K., Izv.vuzov. Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh protsessov. Seriya matematika, 5(6):18 (1958) | MR | Zbl

[8] Zhidkov E. P., Kazarinov Yu. M., Makarenko G. I, Rakitskii A. V., Reshenie obratnoi zadachi rasseyaniya metodom vvedeniya nepreryvnogo parametra, preprint R1-5306, OIYaI, Dubna, 1970

[9] Vizner Ya., Zhidkov E. P., Lelek V., Metod rascheta potentsiala putem vvedeniya parametra, preprint R5-3895, OIYaI, Dubna, 1968

[10] Fadeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4(88) (1959), 57 | MR

[11] Shatan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980 | MR

[12] Zhidkov E. P., Malyshev R. V., Khristov E. Kh., O raschete na EVM obratnoi zadachi rasseyaniya, preprint R5-9923, OIYaI, Dubna, 1976

[13] Zhidkov E. P., Puzynin I. V., DAN SSSR, 180:18 (1968)

[14] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR