The optimal parameters for explicit Runge--Kutta schemes of lower orders
Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 61-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The explicit Runge–Kutta schemes of the low orders are well known. General expressions for parametrical families of these schemes are constructed and the optimum values of parameters are found. The interpolation properties are also investigated.
@article{MM_2006_18_2_a4,
     author = {E. A. Alshina and E. M. Zaks and N. N. Kalitkin},
     title = {The optimal parameters for explicit {Runge--Kutta} schemes of lower orders},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_2_a4/}
}
TY  - JOUR
AU  - E. A. Alshina
AU  - E. M. Zaks
AU  - N. N. Kalitkin
TI  - The optimal parameters for explicit Runge--Kutta schemes of lower orders
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 61
EP  - 71
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_2_a4/
LA  - ru
ID  - MM_2006_18_2_a4
ER  - 
%0 Journal Article
%A E. A. Alshina
%A E. M. Zaks
%A N. N. Kalitkin
%T The optimal parameters for explicit Runge--Kutta schemes of lower orders
%J Matematičeskoe modelirovanie
%D 2006
%P 61-71
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_2_a4/
%G ru
%F MM_2006_18_2_a4
E. A. Alshina; E. M. Zaks; N. N. Kalitkin. The optimal parameters for explicit Runge--Kutta schemes of lower orders. Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 61-71. http://geodesic.mathdoc.fr/item/MM_2006_18_2_a4/

[1] C. Runge, “Üeber die numerische Auflösung von Differentialgleichungen”, Math. Ann., 46 (1895), 167–178 | DOI | MR

[2] W. Kutta, “Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschr”, Für Math. U. Phys., 46 (1901), 435–453

[3] C. Runge, “Üeber die numerische Auflösung totaler Differentialgleichungen”, Göttinger Nachr., 1905, 252–257 | Zbl

[4] J. C. Butcher, “Coefficients for study of Runge–Kutta integration processes”, J. Austral. Math. Soc., 3 (1963), 185–201 | DOI | MR | Zbl

[5] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[6] E. Khairer., G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[7] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae”, J.Comp. Appl. Math., 6 (1980), 19–26 | DOI | MR | Zbl

[8] G. I. Marchuk, V. V. Shaidurov, Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[9] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.