Application of a hybrid approach for far-field sound prediction from high-speed helicopter blades
Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a method to predict the sound from helicopter rotor blades in high-speed forward flight conditions. Results of predictions are compared with experimenal data. The noise prediction method is based on an integral representation theorem which follows from the Lighthill acoustic analogy. The non-linear sources in the penetrable Ffowcs Williams–Hawkings formulation are supplied by the acoustically tailored near-field CFD computation. The near-field transonic flow is calculated in the reference frame moving with the helicopter blade. To compute the flow a shock-capturing finite-difference scheme with charactersitic flux-splitting is used. The use of numerically consistent approximation for non-inertial source terms and local non-reflecting boundary conditions makes the numerical solution particularly accurate.
@article{MM_2006_18_2_a0,
     author = {S. A. Karabasov},
     title = {Application of a hybrid approach for far-field sound prediction from high-speed helicopter blades},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_2_a0/}
}
TY  - JOUR
AU  - S. A. Karabasov
TI  - Application of a hybrid approach for far-field sound prediction from high-speed helicopter blades
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 3
EP  - 23
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_2_a0/
LA  - ru
ID  - MM_2006_18_2_a0
ER  - 
%0 Journal Article
%A S. A. Karabasov
%T Application of a hybrid approach for far-field sound prediction from high-speed helicopter blades
%J Matematičeskoe modelirovanie
%D 2006
%P 3-23
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_2_a0/
%G ru
%F MM_2006_18_2_a0
S. A. Karabasov. Application of a hybrid approach for far-field sound prediction from high-speed helicopter blades. Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2006_18_2_a0/

[1] Grace S. M., Fundamentals of Aeroacoustics, Advances in Aeroacoustics and Applications, von Karman Institute for Fluid Dynamics Lecture Series, 2004-05

[2] Brentner K. S., Farasat F., “Helicopter Noise Prediction: The Current Status and Future Direction”, Journal of Sound and Vibration, 170:1 (1994), 79–96 | DOI | Zbl

[3] Gutin L., “O zvukovom pole vraschayuschegosya vinta”, Zhurnal tekhnicheskoi fiziki, 1939, no. 6, 889–909

[4] Ffowcs Williams J. E., Hawkings D. L., “Sound generated by turbulence and surfaces in arbitrary motion”, Philosophical Transactions of the Royal Society, A264 (1969), 321–342

[5] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[6] di Francescantonio P., “A new boundary integral formulation for the prediction of sound radiation”, Journal of Sound Vibration, 202:4 (1997), 491–509 | DOI

[7] Farassat F., Mayers M. K., “Extension of Kirchhoff's Formula to Radiation from Moving Surfaces”, Journal of Sound Vibration, 123:3 (1997), 451–460 | DOI | MR

[8] Lighthill M. J., “On sound generated aerodynamically. I: general theory”, Proceedings of the Royal Society, A221 (1952), 564–587 | MR

[9] Lyrintzis A. S., “Review: The Use of Kirchhoff's Method in Computational Aeroacoutics”, ASME Journal of Fluids Engineering, 116 (December 1994), 665–676 | DOI

[10] Brentner K. S., Lyrintzus A. A., Koutsavdis E. K., “Comparison of Computational Aeroacoutics Prediction Methods for Transonic Rotor Noise”, Journal of Aircraft, 34:4 (1997), 531–538 | DOI

[11] Lyrintzis A. S., Xue Y., “Versatile Kirchhoff Code for Aeroacoutic Predictions”, AIAA Journal, 35:1 (1997) | DOI | Zbl

[12] Brentner K. S., Farassat F., “Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces”, AIAA Journal, 36:8 (1998), 1379–1386 | DOI

[13] Morgans A. S., Dowling A. P., “The Aeroacoustics of Transonic Helicopter Blades”, 8-th AIAA/CEAS Aeroacoustics Conference, No. 2002-2545 (Breckenridge, CO, USA, June 2002)

[14] Morgans A. S., Karabasov S. A., Dowling A. P., Hynes T. P., “Transonic Helicopter Noise”, American Helicopter Society 59-th Annual Forum (May 6–8, 2003)

[15] Hirsh C., Numerical computation of internal and external flows0 vol. 2: Computational Methods for Inviscid and Viscous Flows, John Wiley Sons Ltd., 1990

[16] Karabasov S. A., Hynes T. P., Open Boundary Conditions of Predictor-Corrector type for external flows, AIAA-2002-2442, 2002

[17] Allen C. B., The reduction of numerical entropy generated by unsteady shockwaves, Preprint from The Aeronautical Journal of the Royal Aeronautical Society, 1997

[18] Krame E., Hertel J., Wagner S., Euler procedure for calculation of the steady rotor flow with emphasis on wake evolution, AIAA 90-3007-CP, 1990

[19] Zhong B., Qin N., “Non-inertial multiblock Navier-Stokes calculation for hovering rotor flow fields using relative velocity approach”, The Aeronautical Journal, July 2001, 379–389

[20] Karabasov S. A., “A Method for Solving Compressible Flow Equations in Unsteady Free Steam”, 10th AIAA/CEAS Aeroacoustics Conference, AIAA-2894-2004 (Manchester, UK, 2004)

[21] Abalakin I., Dervieux A., Kozubskaya T., “On Computational Efficiency of Euler Based Models in Free Flow AeroAcoustics”, 6-th CEAS-ASC Workshop: From CFD to CAA, NTUA Athens, Greece, November 2002

[22] Ryaben'kii V. S., Tsynkov S. V., “An Application of the Difference Potentials Method to Solving External Problems in CFD”, Computational Fluid Dynamics Review 1998, v. 1, eds. M. Hafez, K. Oshima, World Scientific, Singapore, 169–205

[23] Thompson K. W., “Time dependent boundary conditions for hyperbolic systems. II”, Journal of Computational Physics, 89 (1990), 439–461 | DOI | MR | Zbl

[24] Giles M. B., “Nonreflecting Boundary Conditions for Euler Equations Calculations”, AIAA Journal, 28:12, 2050–2058 | DOI

[25] Rowley C. W., Colonius T., “Discretely Nonreflecting Boundary Conditions for Linear Hyperbolic Systems”, Journal of Computational Physics, 157 (2000), 500–538 | DOI | MR | Zbl

[26] Tam C. K. W., Webb J. C., “Dispersion-Relation-Preserving finite difference schemes for computational acoustics”, Journal of Computational Physics, 48 (1982), 182–199 | DOI | MR

[27] Tam C. K. W., Dong Z., “Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a non-uniform mean flow”, Journal of Computational Acoustics, 4 (1996), 175–201 | DOI | MR

[28] Hu F. Q., “On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer”, Journal of Computational Physics, 129 (1996), 201–219 | DOI | MR | Zbl

[29] Hu F. Q., “A Stable Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables”, Journal of Computational Physics, 173 (2001), 455–480 | DOI | MR | Zbl

[30] Chen C. L., McCroskey W. J., Obayashi S., “Numerical Solution of Forward-Flight Rotor Flow Using an Upwind Method”, J. Aircraft, 28 (1991), 374–380 | DOI

[31] Baeder J. D., “Euler Solutions to Nonlinear Acoustics of Non-Lifting Rotor Blades”, International Technical Specialists Meetings on Rotorcraft Acoustics and Rotor Fluid Dynamics, Phyladelphia, PA, USA, 1991