Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_1_a3, author = {L. P. Bass and O. V. Nikolaeva and V. S. Kuznetsov and A. V. Bykov and A. V. Priezzhev and A. A. Dergachev}, title = {Optical radiation propagation modeling in a phantom of biological tissue by the supercomputer {MBC1000/M}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {29--42}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_1_a3/} }
TY - JOUR AU - L. P. Bass AU - O. V. Nikolaeva AU - V. S. Kuznetsov AU - A. V. Bykov AU - A. V. Priezzhev AU - A. A. Dergachev TI - Optical radiation propagation modeling in a phantom of biological tissue by the supercomputer MBC1000/M JO - Matematičeskoe modelirovanie PY - 2006 SP - 29 EP - 42 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2006_18_1_a3/ LA - ru ID - MM_2006_18_1_a3 ER -
%0 Journal Article %A L. P. Bass %A O. V. Nikolaeva %A V. S. Kuznetsov %A A. V. Bykov %A A. V. Priezzhev %A A. A. Dergachev %T Optical radiation propagation modeling in a phantom of biological tissue by the supercomputer MBC1000/M %J Matematičeskoe modelirovanie %D 2006 %P 29-42 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2006_18_1_a3/ %G ru %F MM_2006_18_1_a3
L. P. Bass; O. V. Nikolaeva; V. S. Kuznetsov; A. V. Bykov; A. V. Priezzhev; A. A. Dergachev. Optical radiation propagation modeling in a phantom of biological tissue by the supercomputer MBC1000/M. Matematičeskoe modelirovanie, Tome 18 (2006) no. 1, pp. 29-42. http://geodesic.mathdoc.fr/item/MM_2006_18_1_a3/
[1] Zimnyakov D. A., Tuchin V. V., “Opticheskaya tomografiya tkanei”, Kvantovaya elektronika, 32:10 (2002), 849–867
[2] Priezzhev A. V., Tuchin V. V., Shubochkin L. P., Lazernaya diagnostika v biologii i meditsine, Nauka, M., 1989
[3] Tuchin V. V., Lazery i volokonnaya optika v biomeditsinskikh issledovaniyakh, Izd-vo Saratovskogo un-ta, Saratov, 1998
[4] Yodh A., Trombrg B., Sevick-Muraca E., Pine D., “Special Section: Diffusing photons in turbid media”, J. Opt. Soc. Am. A, 14 (1997), 136–342 | DOI
[5] Isimaru A., Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, Mir, M., 1981
[6] Kandidov V. P., “Metod Monte-Karlo v nelineinoi statisticheskoi optike”, UFN, 166:12 (1996), 1309–1338 | DOI
[7] Bass L. P., Voloschenko A. M., Germogenova T. A., Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPMatem. AN SSSR, M., 1986
[8] Bass L. P., Germogenova T. A., Kuznetsov V. S., Nikolaeva O. V., “Raduga-5.1 i Raduga-5.1(P)–programmy dlya resheniya statsionarnogo uravneniya perenosa v 2-kh i 3-kh mernykh geometriyakh na odno- i mnogoprotsessornykh EVM”, Sbornik dokladov seminara “Algoritmy i programmy dlya neitronno-fizicheskikh raschetov yadernykh reaktorov (Neitronika-2001)” (30 oktyabrya–2 noyabrya), Obninsk, 2001
[9] Klose A. D., et al., “Optical tomography using the time-independent equation of radiative transfer - Part I: forward model”, JQSRT, 72 (2002), 691–713
[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Gos. izd-vo fiz.-mat. lit., M., 1962, 1100 pp. | MR
[11] Habetler G, Matkowsky B., “Uniform Asymptotic Expansion in Transport Theory with Small Mean Free Paths and the Diffusion Approximation”, J. Math. Phys., 16 (1975), 846–854 | DOI | MR | Zbl
[12] Germogenova T. A., “Regulyarnye komponenty asimptoticheskikh priblizhenii k resheniyam uravneniya perenosa v opticheski plotnykh sredakh”, ZhVMiMF, 37 (1997), 464–482 | MR | Zbl
[13] Germogenova T. A., Zadachi s sosredotochennymi istochnikami v statsionarnoi teorii perenosa, preprint No 23, IPM im. M. V. Keldysha, M., 1971 | MR
[14] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967 | MR
[15] Landesman M., Morel J. E., “Angular Fokker–Planck Decomposition and Representation Techniques”, Nucl. Sci. Eng., 103 (1989), 1–11
[16] Fawzi Y. S., Abo-Bakr M. Y., El-Batanony M. H. and Kadah Y. M., “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths”, Appl. Opt., 42:38 (2003), 6398–6411 | DOI