Solving Gromeka--Lamba equations by means of perturbation theory
Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 52-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

On basis of perturbation theory solving of Gromeka–Lamba equations for charged particles suggested. The new type of ambipolar diffusion caused by sluggishness of ions and electrons had been investigated, and processes of ambipolar diffusion in simple plasma (consist of electrons and one sort of ions) had been classified. Three main types of ambipolar diffusion had been compared, they are: 1) Schottky's diffusion (caused by higher electron's mobility and temperature than ion's mobility and temperature), 2) Poisson's diffusion (caused by disturbance of neutrality of plasma), 3) Euler's diffusion (caused by sluggishness of ions and electrons). Coefficients of all diffusions had been calculated, and dependences on main plasma parameters had been determined. According to classification of ambipolar diffusions discontinuities of the main plasma parameters had been divided on discontinuities with disturbance of neutrality of plasma (Poisson) and diffusion discontinuities, which in they turn had been divided on Euler's discontinuities and Schottky's classical discontinuities.
@article{MM_2006_18_12_a4,
     author = {F. I. Vysikailo and M. I. Kuzmin and B. V. Chekalin},
     title = {Solving {Gromeka--Lamba} equations by means of perturbation theory},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {52--66},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_12_a4/}
}
TY  - JOUR
AU  - F. I. Vysikailo
AU  - M. I. Kuzmin
AU  - B. V. Chekalin
TI  - Solving Gromeka--Lamba equations by means of perturbation theory
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 52
EP  - 66
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_12_a4/
LA  - ru
ID  - MM_2006_18_12_a4
ER  - 
%0 Journal Article
%A F. I. Vysikailo
%A M. I. Kuzmin
%A B. V. Chekalin
%T Solving Gromeka--Lamba equations by means of perturbation theory
%J Matematičeskoe modelirovanie
%D 2006
%P 52-66
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_12_a4/
%G ru
%F MM_2006_18_12_a4
F. I. Vysikailo; M. I. Kuzmin; B. V. Chekalin. Solving Gromeka--Lamba equations by means of perturbation theory. Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 52-66. http://geodesic.mathdoc.fr/item/MM_2006_18_12_a4/

[1] Vysikailo F. I., “Skachki parametrov neodnorodnoi stolknovitelnoi plazmy s tokom, obuslovlennye narusheniem kvazineitralnosti”, Fizika plazmy, 11:10 (1985), 1256–1261

[2] Vysikailo F. I., “O protsessakh snosa v plazme gazovogo razryada”, Fizika plazmy, 16:10 (1990), 1268–1270

[3] Vysikailo F. I., Protsessy ambipolyarnogo perenosa v formirovanii neodnorodnykh profilei v strukturakh v gazorazryadnoi plazme, Dissertatsiya na soiskanie uchenoi stepeni d.f.-m.n., TRINITI, Troitsk, 2003

[4] Schottky W., “Diffusions Theorie der positiv Säule”, Phys. Zeit., 25 (1924), 635

[5] Parker J. H., Lowke J. J., Phys. Rev., 181 (1969), 290–302 | DOI

[6] Scullerud H. R., J. Phys. B, Ser. 2, 2 (1969), 696

[7] Aleksandrov N. L., Konchakov A. M., Napartovich A. P., Starostin A. N., “Yavleniya perenosa zaryazhennykh chastits v slaboionizovannoi plazme”, Khimiya plazmy, 11, ed. Smirnov B. M., Atomizdat, M., 1984, 3–45

[8] Soroka A. M., Shapiro G. I., “Vozniknovenie vynuzhdennoi ambipolyarnoi diffuzii pod deistviem vysokochastotnogo elektricheskogo polya”, Pisma v ZhETF, 5:3 (1979), 129–132

[9] Rozhanskii V. A., Tsendin L. D., Stolknovitelnyi perenos v chastichno-ionizovannoi plazme, Energoatomizdat, M., 1988

[10] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Uchebnik dlya vuzov, Izd. 6, Nauka, M., 1987 | MR

[11] Dutton J., “A survey of electron swarm data”, J. Phys. Chem. Ref. Data, 4:3 (1975), 577–600

[12] Mak-Daniel I., Mezon E., Podvizhnost i diffuziya ionov v gazakh, Mir, M., 1976

[13] Vysikailo F. I., “Ambipolyarnyi dreif slaboionizovannoi plazmy, obuslovlennyi nelokalnostyu funktsii raspredeleniya elektronov”, Fizika plazmy, 13:2 (1987), 216–223

[14] Bondarenko A. V., Vysikailo F.I., Kokhan V. I., “Prodolnyi razryad v turbulentnom potoke azota”, Teplofizika vysokikh temperatur, 21:2 (1983), 388–389 | MR

[15] Vysikailo F. I., “Kumulyativno-reaktivnye dissipativnye struktury kak paradigma sinergetiki”, Trudy sem. “Sinergetika”, t. 4, ed. S. P. Kurdyumov, MGU, M., 2001, 106–130

[16] Vysikailo F. I., “Gipersvoistva kumulyativnykh dissipativnykh kristallov”, Trudy Mezhdunarodnoi konferentsii VI Zababakhinskie nauchnye chteniya, Tezisy k dokladam, Snezhinsk, Chelyabinskoi obl., 2001, 31–32

[17] Vysikailo F. I., Sharov I. V., “Sistema katodnykh pyaten kak kulonovskii dissipativnyi kristall”, Tezisy dokladov na XI Vserossiiskoi konf. po fizike gazovogo razryada, Ch. 1, Ryazan, 2002, 14–16

[18] Akishev Yu. S., Vysikailo F. I., Napartovich A. P., Ponomarenko V. V., “Issledovanie kvazistatsionarnogo razryada v azote”, Teplofizika vysokikh temperatur, 18:2 (1980), 266–272

[19] Vysikailo F. I., Glova A. F., Smakotin M. M., “Statsionarnyi tleyuschii razryad v azote s otritsatelnoi voltampernoi kharakteristikoi”, Fizika plazmy, 14:6 (1988), 734–736

[20] Golubev V. S., Pashkin S. V., Tleyuschii razryad povyshennogo davleniya, Nauka, M., 1990

[21] Bronin S. Ya., Kolobov V. M., “Ponizhenie poryadka sistemy gidrodinamicheskikh uravnenii slaboionizirovannoi plazmy”, Fizika plazmy, 9:5 (1983), 1082–1087

[22] Raizer Yu. P., Fizika gazovogo razryada, Nauka, M., 1988

[23] Vysikailo F. I., ZhETF, 125:5 (2004), 1071–1081

[24] Pekarek L., “Ionizatsionnye volny (straty) v razryadnoi plazme”, Uspekhi fizicheskikh nauk, 94:3, 463–500