Analytical characteristics of the polymeasured mechanical system
Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 43-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorems are given about all decisions mechanical system from $k$ degrees of freedom by appointed laws indirect regulation asymptotically long to go towards corresponding permanent decisions.
@article{MM_2006_18_12_a3,
     author = {A. V. Zubov},
     title = {Analytical characteristics of the polymeasured mechanical system},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_12_a3/}
}
TY  - JOUR
AU  - A. V. Zubov
TI  - Analytical characteristics of the polymeasured mechanical system
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 43
EP  - 51
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_12_a3/
LA  - ru
ID  - MM_2006_18_12_a3
ER  - 
%0 Journal Article
%A A. V. Zubov
%T Analytical characteristics of the polymeasured mechanical system
%J Matematičeskoe modelirovanie
%D 2006
%P 43-51
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_12_a3/
%G ru
%F MM_2006_18_12_a3
A. V. Zubov. Analytical characteristics of the polymeasured mechanical system. Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 43-51. http://geodesic.mathdoc.fr/item/MM_2006_18_12_a3/

[1] Zubov V. I., Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya, izd. 2, Mashinostroenie, L., 1974 | MR | Zbl

[2] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1951

[3] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973 | MR | Zbl

[4] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[5] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, M.-L., 1950

[6] Nemytskii V. V., Stepanov B. V., Kachestvennaya teoriya differentsialnykh uravnenii, 2-e izd., M.-L., 1949 | Zbl

[7] Anosov D. V., “Lorentsa attraktor”, Matematicheskaya entsiklopediya, T. 3, Sov. Entsiklopediya, M., 1982, 451–453

[8] Zubov I. V., Metody analiza dinamiki upravlyaemykh sistem, Fizmatlit, M., 2003