Monotone random movement of particles on an integer-number-lane and LYuMEN problem
Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 19-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the traffics on a multi-lane road is considered. A car has to move from one extreme lane to the other extreme lane. An approach is elaborated which allows to estimate the dependence of the road section capacity on its parameters. As an example it is represented the results of calculations for given values of the section parameters.
@article{MM_2006_18_12_a1,
     author = {A. S. Bugaev and A. P. Buslaev and A. G. Tatashev},
     title = {Monotone random movement of particles on an integer-number-lane and {LYuMEN} problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--34},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_12_a1/}
}
TY  - JOUR
AU  - A. S. Bugaev
AU  - A. P. Buslaev
AU  - A. G. Tatashev
TI  - Monotone random movement of particles on an integer-number-lane and LYuMEN problem
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 19
EP  - 34
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_12_a1/
LA  - ru
ID  - MM_2006_18_12_a1
ER  - 
%0 Journal Article
%A A. S. Bugaev
%A A. P. Buslaev
%A A. G. Tatashev
%T Monotone random movement of particles on an integer-number-lane and LYuMEN problem
%J Matematičeskoe modelirovanie
%D 2006
%P 19-34
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_12_a1/
%G ru
%F MM_2006_18_12_a1
A. S. Bugaev; A. P. Buslaev; A. G. Tatashev. Monotone random movement of particles on an integer-number-lane and LYuMEN problem. Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 19-34. http://geodesic.mathdoc.fr/item/MM_2006_18_12_a1/

[1] Greenshields D. B., “A study in highway capacity”, Proceed. Highway Research Board, 14 (1934), 448–477

[2] Barnes H. A., “Engineering Studies of Urban Traffic Flow”, Operation Research, 3:4 (1955), 536–544 | DOI | MR

[3] Herrey E. M. I., Herrey H., “Principles of Physics Applied to Traffic. Movement and Road Condition”, Amer J. Phys., 13 (1945), 1–14 | DOI

[4] Lighthill M. I., Whitham G.B., “On kinematic Waves. II: A Theory of Traffic Flow on Long Growded Roads”, Proceed. Roy. Soc. A, 229 (1955), 317–345 | DOI | MR | Zbl

[5] Edie L. G., Foote R. S., “Traffic flow in Tunnels”, Proc. Highway Research Board, 37 (1958), 334–344

[6] Kometani E., Sasaki T., “On the Stability of Traffic Flow, I”, J. Operations Research Soc. Japan, 2:31 (1958), 11–26 | MR

[7] Pipes L. A., “A mathematical Analysis of Traffic Dynamics”, J. Operations Research Soc. Am., 1 (1953), 151

[8] Kheit F., Matematicheskaya teoriya transportnykh potokov, Mir, M., 1966

[9] Dryu D., Teoriya transportnykh potokov i upravlenie imi, Transport, M., 1972

[10] Babkov V. F., Avtomobilnye dorogi, Transport, M., 1983

[11] Inose Kh., Khamada T., Upravlenie dorozhnym dvizheniem, Transport, M., 1983

[12] Kühne R., Mahnke R., Lubashevsky, Kaupužs, J. Phys. Rev. E, 65 (2002), 066125 | DOI

[13] Mahnke R., Kaupužs J., Lubashevsky I., Phys. Rep., 408:1 (2005) | DOI

[14] Buslaev A. P., Novikov A. V., Prikhodko V. M. i dr., Veroyatnostnye i imitatsionnye podkhody k optimizatsii avtodorozhnogo dvizheniya, Mir, M., 2003

[15] Buslaev A. P., Prikhodko V. M., Tatashev A. G., Yashina M. V., The deterministic-stochastic flow model, , 2005 http://arxiv.org/abs/physics/0504139

[16] Prikhodko V. M., Buslaev A. P., Stokhasticheskoe modelirovanie i optimizatsiya v dorozhnom dvizhenii: Monografiya, Izd. MADI GTU, M., 2003

[17] Lukanin V. N., Buslaev A. P., Novikov A. V., Yashina M.V., “Traffic Flows modeling and the evalutation of energy-ecological parameters. Part I–II”, Intern. J. of Vehicle Design, 33:4 (2003), 381–421 | DOI

[18] Nagel K., Schrekenberg M., “A cellular automation model for freeway traffic”, J. Physique I France 2, 2 (1992), 2221–2229 | DOI

[19] Nagel K., Wolf D. E., Wagner P., Simon P. M., “Two-lane traffic rules for cellular automata: A systematic approach”, Phys. Rev. E, 58:2 (1998), 1425–1437 | DOI

[20] Buslaev A. P., Tatashev A. G., Yashina M. V., Traffic flow stochastic model ($2^*2$) with discrete set of states and continuous time, , 2004 http://arxiv.org/abs/cond-mat/0405471 | MR

[21] Belyaev Yu. K., Buslaev A. P., Seleznev O. V., Markovskaya approksimatsiya stokhasticheskoi modeli dvizheniya po dvum polosam, Dep. v VINITI 03.07.2002 g. No 1234-B, Moskovskii avtomobilno-dorozhnyi institut (GTU), M., 2002

[22] Belyaev Yu. K., “Ob uproschennoi modeli dvizheniya bez obgona”, Izvestiya AN SSSR. Tekhn. kibernetika, 3 (1969), 17–21 | Zbl

[23] Tsele U., “Obobschenie modeli dvizheniya bez obgona”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 5 (1972), 100–102

[24] Lubashevsky I., Wagner P., Mahnke R., Phys. Rev. E, 68 (2003), 056109 | DOI

[25] Lubashevsky I., Wagner P., Mahnke R., Eur. Phys. J. B, 32 (2003), 243 | DOI

[26] Lubashevsky I., Hajimahmoodzadeh M., Katsnelson A., Wagner P., Eur. Phys. J. B, 36 (2003), 115 | DOI

[27] Lubashevsky I., Mahnke R., Hajimahmoodzadeh M., Katsnelson A., Eur. Phys. J. B, 44 (2005), 63 | DOI

[28] Vasilev A. P., Frimshtein M. I., Upravlenie dvizheniem na avtomobilnykh dorogakh, Transport, M., 1979 | Zbl

[29] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1964 | Zbl

[30] Lubashevski I., Mahnke R., Wagner P., Kalenkov S., “Order parameter model unstable multilane traffic”, Phys. Rev. E, 66 (2002), 016117 | DOI

[31] Buslaev A. P., Tatashev A. G., Yashina M. V., “O svoistvakh reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii na grafakh”, Vladikavkazskii matematicheskii zhurnal, 6:4 (2004), 4–18, VNTs RAN | MR

[32] Buslaev A. P., Tatashev A. G., Yashina M. V., “O potokakh na grafakh”, Abstracts Int. Conf. “Extremal Problems and Approximation”, Dedicated to the 70th birthday of V. M. Tikhomirov (MSU, Moscow, 16–18 December 2004), 31–33