Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_11_a9, author = {L. V. Borodachev and I. V. Mingalev and O. V. Mingalev}, title = {The numerical approximation of discrete {Vlasov--Darwin} model based on the optimal reformulation of field equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {117--125}, publisher = {mathdoc}, volume = {18}, number = {11}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/} }
TY - JOUR AU - L. V. Borodachev AU - I. V. Mingalev AU - O. V. Mingalev TI - The numerical approximation of discrete Vlasov--Darwin model based on the optimal reformulation of field equations JO - Matematičeskoe modelirovanie PY - 2006 SP - 117 EP - 125 VL - 18 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/ LA - ru ID - MM_2006_18_11_a9 ER -
%0 Journal Article %A L. V. Borodachev %A I. V. Mingalev %A O. V. Mingalev %T The numerical approximation of discrete Vlasov--Darwin model based on the optimal reformulation of field equations %J Matematičeskoe modelirovanie %D 2006 %P 117-125 %V 18 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/ %G ru %F MM_2006_18_11_a9
L. V. Borodachev; I. V. Mingalev; O. V. Mingalev. The numerical approximation of discrete Vlasov--Darwin model based on the optimal reformulation of field equations. Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 117-125. http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/
[1] A. A. Vlasov, Teoriya mnogikh chastits, GITTL, M.-L., 1950
[2] C. G. Darwin, “Dynamical motions of charged particles”, Phil. Mag., 39 (1920), 537
[3] A. N. Kaufman, P. S. Rostler, “The Darwin model as a tool for electromagnetic plasma simulation”, Phys. Fluids, 14 (1971), 446 | DOI
[4] K. Nilsen, G. Lyuis, “Modeli ukrupnennykh chastits v bezyzluchatelnom predele”, Upravlyaemyi termoyadernyi sintez, ed. Dzh. Killin, Mir, M., 1980, 395
[5] D. W. Hewett, “Elumination of electromagnetic radiation in plasma simulation: the Darwin or magnetoinductive approximation”, Space Sci. Rev., 42 (1985), 29 | DOI
[6] L. V. Borodachev, “K probleme matematicheskogo modelirovaniya bezyzluchatelnoi plazmy”, Vestnik MGU. Ser. 3, 34,:3 (1993), 87
[7] D.W. Hewett “Low-frequency electromagnetic (Darwin) applications in plasma simulation”, Comp. Phys. Comm., 84 (1994), 243 | DOI
[8] L. V. Borodachev, Darvinskoe opisanie samosoglasovannykh elektromagnitnykh polei plazmy i osobennosti ego diskretnoi interpretatsii, Preprint No 19, MGU, M., 2000
[9] R. Khokni, Dzh. Istvud, Chislennoe modelirovanie metodom chastits, Mir, M., 1987
[10] L. V. Borodachev, “Chislennaya interpretatsiya polevogo opisaniya v diskretnoi darvinskoi modeli s neyavnoi skhemoi rascheta dinamiki chastits”, Matem. modelirovanie, 17:9 (2005), 53–59
[11] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001
[12] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[13] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1970 | MR | Zbl
[14] L. V. Borodachev, “Neyavnaya approksimatsiya uravnenii dvizheniya darvinskoi modeli plazmy”, ZhVM i MF, 31:6 (1991), 934 | MR | Zbl
[15] L. V. Borodachev, I. V. Mingalev, O. V. Mingalev, “Dreifovyi algoritm rascheta dvizheniya zaryada v darvinskoi modeli plazmy”, ZhVM i MF., 43:3 (2003), 467 | MR | Zbl