The numerical approximation of discrete Vlasov--Darwin model based on the optimal reformulation of field equations
Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 117-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we discuss the elliptic reformulation of initial-boundary problem for Vlasov–Maxwell equation system in general three-dimensional (3D3V) case. We briefly describe a scheme of its numerical solution with the PIC method, that allows building correct nonradiative algorithms. Achieved redaction of original initial-boundary problem is easily adaptable both to fractional-dimensional (2D3V) formulations and to different sets of boundary conditions.
@article{MM_2006_18_11_a9,
     author = {L. V. Borodachev and I. V. Mingalev and O. V. Mingalev},
     title = {The numerical approximation of discrete {Vlasov--Darwin} model based on the optimal reformulation of field equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/}
}
TY  - JOUR
AU  - L. V. Borodachev
AU  - I. V. Mingalev
AU  - O. V. Mingalev
TI  - The numerical approximation of discrete Vlasov--Darwin model based on the optimal reformulation of field equations
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 117
EP  - 125
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/
LA  - ru
ID  - MM_2006_18_11_a9
ER  - 
%0 Journal Article
%A L. V. Borodachev
%A I. V. Mingalev
%A O. V. Mingalev
%T The numerical approximation of discrete Vlasov--Darwin model based on the optimal reformulation of field equations
%J Matematičeskoe modelirovanie
%D 2006
%P 117-125
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/
%G ru
%F MM_2006_18_11_a9
L. V. Borodachev; I. V. Mingalev; O. V. Mingalev. The numerical approximation of discrete Vlasov--Darwin model based on the optimal reformulation of field equations. Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 117-125. http://geodesic.mathdoc.fr/item/MM_2006_18_11_a9/

[1] A. A. Vlasov, Teoriya mnogikh chastits, GITTL, M.-L., 1950

[2] C. G. Darwin, “Dynamical motions of charged particles”, Phil. Mag., 39 (1920), 537

[3] A. N. Kaufman, P. S. Rostler, “The Darwin model as a tool for electromagnetic plasma simulation”, Phys. Fluids, 14 (1971), 446 | DOI

[4] K. Nilsen, G. Lyuis, “Modeli ukrupnennykh chastits v bezyzluchatelnom predele”, Upravlyaemyi termoyadernyi sintez, ed. Dzh. Killin, Mir, M., 1980, 395

[5] D. W. Hewett, “Elumination of electromagnetic radiation in plasma simulation: the Darwin or magnetoinductive approximation”, Space Sci. Rev., 42 (1985), 29 | DOI

[6] L. V. Borodachev, “K probleme matematicheskogo modelirovaniya bezyzluchatelnoi plazmy”, Vestnik MGU. Ser. 3, 34,:3 (1993), 87

[7] D.W. Hewett “Low-frequency electromagnetic (Darwin) applications in plasma simulation”, Comp. Phys. Comm., 84 (1994), 243 | DOI

[8] L. V. Borodachev, Darvinskoe opisanie samosoglasovannykh elektromagnitnykh polei plazmy i osobennosti ego diskretnoi interpretatsii, Preprint No 19, MGU, M., 2000

[9] R. Khokni, Dzh. Istvud, Chislennoe modelirovanie metodom chastits, Mir, M., 1987

[10] L. V. Borodachev, “Chislennaya interpretatsiya polevogo opisaniya v diskretnoi darvinskoi modeli s neyavnoi skhemoi rascheta dinamiki chastits”, Matem. modelirovanie, 17:9 (2005), 53–59

[11] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[12] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[13] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1970 | MR | Zbl

[14] L. V. Borodachev, “Neyavnaya approksimatsiya uravnenii dvizheniya darvinskoi modeli plazmy”, ZhVM i MF, 31:6 (1991), 934 | MR | Zbl

[15] L. V. Borodachev, I. V. Mingalev, O. V. Mingalev, “Dreifovyi algoritm rascheta dvizheniya zaryada v darvinskoi modeli plazmy”, ZhVM i MF., 43:3 (2003), 467 | MR | Zbl