Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas
Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 95-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analysis of the basic approaches and methods for solution of the physicochemical hydrodynamic problems was performed. The effective parallel algorithms development for these approaches have been overviewed.
@article{MM_2006_18_11_a7,
     author = {V. E. Karpov and A. I. Lobanov},
     title = {Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--103},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/}
}
TY  - JOUR
AU  - V. E. Karpov
AU  - A. I. Lobanov
TI  - Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 95
EP  - 103
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/
LA  - ru
ID  - MM_2006_18_11_a7
ER  - 
%0 Journal Article
%A V. E. Karpov
%A A. I. Lobanov
%T Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas
%J Matematičeskoe modelirovanie
%D 2006
%P 95-103
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/
%G ru
%F MM_2006_18_11_a7
V. E. Karpov; A. I. Lobanov. Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas. Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 95-103. http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/

[1] M. Lange, J. Warnatz, “Massively Parallel Direct Numerical Simulation of Turbulent Combustion”, NIC Symposium 2001, Proceedings, NIC Series, 9, John von Neumann Institute for Computing, 2002, 419–429

[2] R. L. Verweij et al., “Parallel Computing for Reacting Flows Using Adaptive Grid Refinement”, Contemp. Math., 218 (1998), 538–546 | MR | Zbl

[3] G. Salinger, J. N. Shadid et al., “Parallel Reacting Flow Calculations for Chemical Vapor Deposition Reactor Design”, Proceedings of the International Conference on Computational Engineering Science (San Jose, Costa Rica, May 4–9, 1997)

[4] G. Salinger, R. P. Pawlowski et al., Computational Analysis and Optimization of a Chemical Vapor Deposition Reactor with Large-Scale Computing, , 2004 http://www.cs.sandia.gov/DAKOTA/papers/Dept1533-FactSheet-2006.pdf | Zbl

[5] Stone, S. Menon, “Parallel Simulations of Swirling Turbulent Flames”, The Journal of Supercomputing, 22 (2002), 7–28 | DOI | Zbl

[6] Wang, W. Rehm et al., Deliverable 29: Report on parallel computations of laboratory-scale explosion experiments, Fifth Framework Programme (1998–2002) EXPRO: “Experimental and Numerical Study of Reactive Flows in Complex Geometries with Relevance to Industrial Safety for Explosion Protection” CONTRACT EVG1-CT-2001-00042

[7] E. Desjardin, S. H. Frankel, “Two-Dimensional Large Eddy Simulation of Soot Formationin the Near-Field of a Strongly Radiating Nonpremixed Acetylene-Air Turbulent Jet Flame”, Combustion and Flame, 119 (1999), 121–132 | DOI

[8] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985 ; Л. В. Дородницын, М. А. Корнилина, Б. Н. Четверушкин, М. В. Якобовский, “Моделирование газовых течений при наличии химически активных компонентов”, Журнал физической химии, 71:12 (1997), 2275–2281 | Zbl

[9] B. N. Chetverushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike, Izd-vo MGU, M., 1999

[10] R. Cònsul, C. D. Pérez-Segarra et al., “Detailed numerical simulation of laminar flames by a parallel multiblock algorithm using loosely coupled computers”, Combustion Theory and Modelling, 7 (2003), 525–544 | DOI

[11] Yi Wang, A. Trouvé, “Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion”, Combustion Theory and Modelling, 8 (2004), 633–660 | DOI

[12] R. P. Fedorenko, “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, ZhVMiMF, 1:5 (1961) | MR | Zbl

[13] Pakdee, S. Mahalingam, “An accurate method to implement boundary conditions for reacting flows based on characteristic wave analysis”, Combustion Theory and Modelling, 7 (2003), 705–729 | DOI | MR | Zbl

[14] M.-K. M. Magomedov, A. S. Kholodov, Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[15] V. V. Poluosmak, M. O. Vasilev, “Razrabotka algoritmov parallelnogo scheta dlya resheniya zadach magnitnoi gidrodinamiki v primenenii k zadache o vzryve v verkhnei ionosfere”, Sovremennye problemy fundamentalnykh i prikladnykh nauk, Trudy XLVII nauchnoi konferentsii MFTI, 3, 2004, 199–200

[16] M. O. Vasilev, A. Ju. Repin, et al., Numerical researches of formation of jet stream of plasma in large-scale geophysical experiment, http://epsppd.epfl.ch/London/pdf/P1-070.pdf

[17] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[18] W. Peaceman, H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations”, J. SIAM, 3 (1955), 28–41 | MR | Zbl

[19] Averbuch, L. Ioffe, M. Israeli, L. Vozovoi, “Two-dimensional parallel solver for the solution of Navier–Stokes equations with constant and variable coefficients using ADI on cells”, Parallel Computing, 24 (1998), 673–699 | DOI | MR | Zbl

[20] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[21] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir,, M., 1999

[22] G. A. Di Marzo, RODAS5(4), methodes de Rosenbrock d'ordre 5(4) adaptees aux problemes differentiels-algebriques, Memoire de diplome en Mathematiques, Universite de Geneve 1992

[23] Sandu, J. G. Verwer et al., “Benchmarking of stiff ODE solvers for atmospheric chemistry problems. II: Rosenbrock solvers”, Atmospheric Environment, 31:20 (1997), 3459–3472 | DOI

[24] R. Wolke, O. Knoth, “Time-integration of multiphase chemistry in size-resolved cloud models”, Applied Numerical Mathematics, 42 (2002), 473–487 | DOI | MR | Zbl

[25] M. A. Botchev, J. G. Verwer, “A new approximate matrix factorization for implicit time integration in air pollution modeling”, J. of Comput. and Appl. Math., 157 (2003), 309–327 | DOI | MR | Zbl

[26] P. Nordling, A. Sjö, “Parallel solution of modular ODEs with application to rolling bearing dynamics”, Mathematics and Computers in Simulation, 44 (1997), 495–504 | DOI | MR | Zbl

[27] M. A. Botchev, H. A. van der Vorst, “A parallel nearly implicit time-stepping scheme”, J. of Comput. and Appl. Math., 137 (2001), 229–243 | DOI | MR | Zbl

[28] Voss, P. H. Muir, “Mono-implicit Runge-Kutta schemes for the parallel solution of initial value ODEs”, J. of Comput. and Appl. Math., 102 (1999), 235–252 | DOI | MR | Zbl

[29] P. H. Muir et al., “PMIRKDC: a parallel mono-implicit Runge–Kutta code with defect control for boundary value ODEs”, Parallel Computing, 29 (2003), 711–741 | MR

[30] K. R. Jackson, S. P. Norsett, “The Potential for Parallelism in Runge–Kutta Methods”, SIAM J. Numer. Anal., 32:1 (1995), 49–82 | DOI | MR | Zbl

[31] D. Petcu, “Experiments with an ODE Solver on a Multiprocessor System”, An International Journal Computers and Mathematics with Applications, 42 (2001), 1189–1199 | DOI | MR | Zbl

[32] M. M. Ruiz, J. O. Lopera, J. A. Carrillo de la Plata, “Component-Based Derivation of a Parallel Stiff ODE Solver Implemented in a Cluster of Computers”, International Journal of Parallel Programming, 30:2 (2002), 99–148 | DOI | Zbl

[33] D. A. Voss, A. Q. M. Khaliq, “Parallel Rosenbrock methods for chemical systems”, Computers and Chemistry, 25 (2001), 101–107 | DOI | Zbl

[34] H. Podhaisky, B. A. Schmitt, R. Weiner, “Design, analysis and testing of some parallel two-step $\mathrm{W}$-methods for stiff systems”, Applied Numerical Mathematics, 42 (2002), 381–395 | DOI | MR | Zbl