Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas
Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 95-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The analysis of the basic approaches and methods for solution of the physicochemical hydrodynamic problems was performed. The effective parallel algorithms development for these approaches have been overviewed.
@article{MM_2006_18_11_a7,
     author = {V. E. Karpov and A. I. Lobanov},
     title = {Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--103},
     year = {2006},
     volume = {18},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/}
}
TY  - JOUR
AU  - V. E. Karpov
AU  - A. I. Lobanov
TI  - Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 95
EP  - 103
VL  - 18
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/
LA  - ru
ID  - MM_2006_18_11_a7
ER  - 
%0 Journal Article
%A V. E. Karpov
%A A. I. Lobanov
%T Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas
%J Matematičeskoe modelirovanie
%D 2006
%P 95-103
%V 18
%N 11
%U http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/
%G ru
%F MM_2006_18_11_a7
V. E. Karpov; A. I. Lobanov. Parallel computations in the physicochemical hydrodynamic problems: approaches and ideas. Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 95-103. http://geodesic.mathdoc.fr/item/MM_2006_18_11_a7/

[1] M. Lange, J. Warnatz, “Massively Parallel Direct Numerical Simulation of Turbulent Combustion”, NIC Symposium 2001, Proceedings, NIC Series, 9, John von Neumann Institute for Computing, 2002, 419–429

[2] R. L. Verweij et al., “Parallel Computing for Reacting Flows Using Adaptive Grid Refinement”, Contemp. Math., 218 (1998), 538–546 | MR | Zbl

[3] G. Salinger, J. N. Shadid et al., “Parallel Reacting Flow Calculations for Chemical Vapor Deposition Reactor Design”, Proceedings of the International Conference on Computational Engineering Science (San Jose, Costa Rica, May 4–9, 1997)

[4] G. Salinger, R. P. Pawlowski et al., Computational Analysis and Optimization of a Chemical Vapor Deposition Reactor with Large-Scale Computing, , 2004 http://www.cs.sandia.gov/DAKOTA/papers/Dept1533-FactSheet-2006.pdf | Zbl

[5] Stone, S. Menon, “Parallel Simulations of Swirling Turbulent Flames”, The Journal of Supercomputing, 22 (2002), 7–28 | DOI | Zbl

[6] Wang, W. Rehm et al., Deliverable 29: Report on parallel computations of laboratory-scale explosion experiments, Fifth Framework Programme (1998–2002) EXPRO: “Experimental and Numerical Study of Reactive Flows in Complex Geometries with Relevance to Industrial Safety for Explosion Protection” CONTRACT EVG1-CT-2001-00042

[7] E. Desjardin, S. H. Frankel, “Two-Dimensional Large Eddy Simulation of Soot Formationin the Near-Field of a Strongly Radiating Nonpremixed Acetylene-Air Turbulent Jet Flame”, Combustion and Flame, 119 (1999), 121–132 | DOI

[8] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985 ; Л. В. Дородницын, М. А. Корнилина, Б. Н. Четверушкин, М. В. Якобовский, “Моделирование газовых течений при наличии химически активных компонентов”, Журнал физической химии, 71:12 (1997), 2275–2281 | Zbl

[9] B. N. Chetverushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike, Izd-vo MGU, M., 1999

[10] R. Cònsul, C. D. Pérez-Segarra et al., “Detailed numerical simulation of laminar flames by a parallel multiblock algorithm using loosely coupled computers”, Combustion Theory and Modelling, 7 (2003), 525–544 | DOI

[11] Yi Wang, A. Trouvé, “Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion”, Combustion Theory and Modelling, 8 (2004), 633–660 | DOI

[12] R. P. Fedorenko, “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, ZhVMiMF, 1:5 (1961) | MR | Zbl

[13] Pakdee, S. Mahalingam, “An accurate method to implement boundary conditions for reacting flows based on characteristic wave analysis”, Combustion Theory and Modelling, 7 (2003), 705–729 | DOI | MR | Zbl

[14] M.-K. M. Magomedov, A. S. Kholodov, Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[15] V. V. Poluosmak, M. O. Vasilev, “Razrabotka algoritmov parallelnogo scheta dlya resheniya zadach magnitnoi gidrodinamiki v primenenii k zadache o vzryve v verkhnei ionosfere”, Sovremennye problemy fundamentalnykh i prikladnykh nauk, Trudy XLVII nauchnoi konferentsii MFTI, 3, 2004, 199–200

[16] M. O. Vasilev, A. Ju. Repin, et al., Numerical researches of formation of jet stream of plasma in large-scale geophysical experiment, http://epsppd.epfl.ch/London/pdf/P1-070.pdf

[17] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[18] W. Peaceman, H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations”, J. SIAM, 3 (1955), 28–41 | MR | Zbl

[19] Averbuch, L. Ioffe, M. Israeli, L. Vozovoi, “Two-dimensional parallel solver for the solution of Navier–Stokes equations with constant and variable coefficients using ADI on cells”, Parallel Computing, 24 (1998), 673–699 | DOI | MR | Zbl

[20] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[21] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir,, M., 1999

[22] G. A. Di Marzo, RODAS5(4), methodes de Rosenbrock d'ordre 5(4) adaptees aux problemes differentiels-algebriques, Memoire de diplome en Mathematiques, Universite de Geneve 1992

[23] Sandu, J. G. Verwer et al., “Benchmarking of stiff ODE solvers for atmospheric chemistry problems. II: Rosenbrock solvers”, Atmospheric Environment, 31:20 (1997), 3459–3472 | DOI

[24] R. Wolke, O. Knoth, “Time-integration of multiphase chemistry in size-resolved cloud models”, Applied Numerical Mathematics, 42 (2002), 473–487 | DOI | MR | Zbl

[25] M. A. Botchev, J. G. Verwer, “A new approximate matrix factorization for implicit time integration in air pollution modeling”, J. of Comput. and Appl. Math., 157 (2003), 309–327 | DOI | MR | Zbl

[26] P. Nordling, A. Sjö, “Parallel solution of modular ODEs with application to rolling bearing dynamics”, Mathematics and Computers in Simulation, 44 (1997), 495–504 | DOI | MR | Zbl

[27] M. A. Botchev, H. A. van der Vorst, “A parallel nearly implicit time-stepping scheme”, J. of Comput. and Appl. Math., 137 (2001), 229–243 | DOI | MR | Zbl

[28] Voss, P. H. Muir, “Mono-implicit Runge-Kutta schemes for the parallel solution of initial value ODEs”, J. of Comput. and Appl. Math., 102 (1999), 235–252 | DOI | MR | Zbl

[29] P. H. Muir et al., “PMIRKDC: a parallel mono-implicit Runge–Kutta code with defect control for boundary value ODEs”, Parallel Computing, 29 (2003), 711–741 | MR

[30] K. R. Jackson, S. P. Norsett, “The Potential for Parallelism in Runge–Kutta Methods”, SIAM J. Numer. Anal., 32:1 (1995), 49–82 | DOI | MR | Zbl

[31] D. Petcu, “Experiments with an ODE Solver on a Multiprocessor System”, An International Journal Computers and Mathematics with Applications, 42 (2001), 1189–1199 | DOI | MR | Zbl

[32] M. M. Ruiz, J. O. Lopera, J. A. Carrillo de la Plata, “Component-Based Derivation of a Parallel Stiff ODE Solver Implemented in a Cluster of Computers”, International Journal of Parallel Programming, 30:2 (2002), 99–148 | DOI | Zbl

[33] D. A. Voss, A. Q. M. Khaliq, “Parallel Rosenbrock methods for chemical systems”, Computers and Chemistry, 25 (2001), 101–107 | DOI | Zbl

[34] H. Podhaisky, B. A. Schmitt, R. Weiner, “Design, analysis and testing of some parallel two-step $\mathrm{W}$-methods for stiff systems”, Applied Numerical Mathematics, 42 (2002), 381–395 | DOI | MR | Zbl