Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation
Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 14-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

New computational method is suggested which joint advantages of conservative finite volume algorithms and characteristics ones. The remarkable feature of new method is a presence of two types of variables, so called 'conservative' parameters and 'fluxes' values. The specialization enables the opportunity to use the conservative form of equation for determination of conservative variables and characteristic form for fluxes parameters. The new computational method is more precise then the well known TVD, TVB and ENO schemes.
@article{MM_2006_18_11_a1,
     author = {V. M. Goloviznin},
     title = {Balanced characteristic method for {1D} systems of hyperbolic conservation laws in eulerian representation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--30},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_11_a1/}
}
TY  - JOUR
AU  - V. M. Goloviznin
TI  - Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 14
EP  - 30
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_11_a1/
LA  - ru
ID  - MM_2006_18_11_a1
ER  - 
%0 Journal Article
%A V. M. Goloviznin
%T Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation
%J Matematičeskoe modelirovanie
%D 2006
%P 14-30
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_11_a1/
%G ru
%F MM_2006_18_11_a1
V. M. Goloviznin. Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation. Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 14-30. http://geodesic.mathdoc.fr/item/MM_2006_18_11_a1/

[1] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[2] Kulikovskii A. G., Pogorelov N. V., Semenov F. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | Zbl

[3] Zhukov A. I., “Primenenie metoda kharakteristik k chislennomu resheniyu odnomernykh zadach gazovoi dinamiki”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 58, 1960, 1–152 | MR | Zbl

[4] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[5] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1968 | Zbl

[6] Bakirova M. I., Gaponenko A. Yu., Moiseev T. E. i dr., “Raznostnaya skhema gazovoi dinamiki s ispolzovaniem parametrov Rimana”, Differentsialnye uravneniya, 38:7 (2002), 936–942 | MR | Zbl

[7] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, DAN, 403:4 (2005), 459–464 | MR

[8] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR

[9] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy “KABARE””, Matem. modelirovanie, 10:1 (1998), 101–116 | MR

[10] Goloviznin V. M., Karabasov S. A., “Nelineinaya korrektsiya skhemy KABARE”, Matem. modelirovanie, 10:12 (1998), 107–123

[11] Shu Ch.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, Journal of Computational Physics, 83:1 (1989), 32–78 | DOI | MR | Zbl

[12] Greenough J. A., Rider W. J., “A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov”, Journal of Computational Physics, 196 (2004), 259–281 | DOI | MR | Zbl

[13] Woodward P., Colella P., Journal of Comp. Physics, 54 (1984), 115–173 | DOI | MR | Zbl

[14] Colella P., Woodward P., Journal of Comp. Physics, 54 (1984), 174–201 | DOI | MR | Zbl