Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods
Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 102-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of equilibrium solutions in the elliptic restricted many-body problem of Sitnikov's kind is studied. Equations of the disturbed motion are obtained in the form of the Hamiltonian system of differential equations with periodic coefficients. We have found the domains of instability of the system in the parameter space and shown that it is stable in Lyapunov sense if an eccentricity of the bodies orbits is sufficiently small. It has been proved that for small values of the eccentricity nonlinear terms in the equations of motion do not disturb stability of the system even if the fourth order resonance takes place. All calculations are done with the computer algebra system Mathematica.
@article{MM_2006_18_10_a9,
     author = {A. N. Prokopenya},
     title = {Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {102--112},
     publisher = {mathdoc},
     volume = {18},
     number = {10},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/}
}
TY  - JOUR
AU  - A. N. Prokopenya
TI  - Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 102
EP  - 112
VL  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/
LA  - ru
ID  - MM_2006_18_10_a9
ER  - 
%0 Journal Article
%A A. N. Prokopenya
%T Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods
%J Matematičeskoe modelirovanie
%D 2006
%P 102-112
%V 18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/
%G ru
%F MM_2006_18_10_a9
A. N. Prokopenya. Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 102-112. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/

[1] A. P. Markeev, “Ustoichivost gamiltonovykh sistem”, Nelineinaya mekhanika, eds. V. M. Matrosov, V. V. Rumyantsev, A. V. Karapetyan, Fizmatlit, M., 2001, 114–130

[2] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, 2-e izd., pererab. i dop., Editorial URSS, M., 2002

[3] V. Sebekhei, Teoriya orbit: ogranichennaya zadacha trekh tel, Nauka, M., 1982

[4] A. P. Markeev, Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978

[5] E. A. Grebenikov, “Two new dynamical models in celestial mechanics”, Romanian Astron. J., 8:1 (1998), 13–19

[6] E. A. Grebenikov, D. Kozak-Skovorodkina, M. Yakubyak, Metody kompyuternoi algebry v probleme mnogikh tel, Izd-vo RUDN, M., 2002 | Zbl

[7] A. N. Prokopenya, “Studying stability of the equilibrium solutions in the restricted many-body problems”, Challenging the boundaries of symbolic computation, Proc. of the 5th International Mathematica Symposium, eds. P. Mitic, Ph. Ramsden, J. Carne, Imperial College Press, London, 2003, 105–112

[8] K. A. Sitnikov, “Suschestvovanie ostsilliruyuschikh dvizhenii v zadache trekh tel”, Dokl. AN SSSR, 133:2 (1960), 303–306 | MR | Zbl

[9] E. A. Grebenikov, “Suschestvovanie tochnykh simmetrichnykh reshenii v ploskoi nyutonovoi probleme mnogikh tel”, Matem. Modelirovanie, 10:8 (1998), 74–80 | MR

[10] G. N. Duboshin, Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1975

[11] S. Wolfram, The Mathematica book, 4th ed., Cambridge University Press, 1999 | MR | Zbl

[12] E. A. Grebenikov, A. N. Prokopenya, “Determination of the boundaries between the domains of stability and instability for the Hill's Equation”, Nonlinear Oscillations, 6:1 (2003), 42–51 | DOI | MR | Zbl

[13] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, ed. Myuntts G., Merkurii-Press, Cherepovets, 2000

[14] A. N. Prokopenya, “Normalizatsiya neavtonomnoi lineinoi gamiltonovoi sistemy s malym parametrom”, Matem. modelirovanie, 17:6 (2005), 33–42 | MR | Zbl

[15] Dzh. D. Birkgof, Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999

[16] V. I. Arnold, “Ob ustoichivosti polozhenii ravnovesiya gamiltonovoi sistemy obyknovennykh differentsialnykh uravnenii v obschem ellipticheskom sluchae”, Dokl. AN SSSR, 137:2 (1961), 255–257 | MR

[17] Yu. Mozer, KAM-teoriya i problemy ustoichivosti, NITs RKhD, Izhevsk, 2001 | Zbl