Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_10_a9, author = {A. N. Prokopenya}, title = {Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {102--112}, publisher = {mathdoc}, volume = {18}, number = {10}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/} }
TY - JOUR AU - A. N. Prokopenya TI - Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods JO - Matematičeskoe modelirovanie PY - 2006 SP - 102 EP - 112 VL - 18 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/ LA - ru ID - MM_2006_18_10_a9 ER -
%0 Journal Article %A A. N. Prokopenya %T Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods %J Matematičeskoe modelirovanie %D 2006 %P 102-112 %V 18 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/ %G ru %F MM_2006_18_10_a9
A. N. Prokopenya. Studying the stability of equilibrium solutions in the elliptic restricted many-body problem with the computer algebra methods. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 102-112. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a9/
[1] A. P. Markeev, “Ustoichivost gamiltonovykh sistem”, Nelineinaya mekhanika, eds. V. M. Matrosov, V. V. Rumyantsev, A. V. Karapetyan, Fizmatlit, M., 2001, 114–130
[2] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, 2-e izd., pererab. i dop., Editorial URSS, M., 2002
[3] V. Sebekhei, Teoriya orbit: ogranichennaya zadacha trekh tel, Nauka, M., 1982
[4] A. P. Markeev, Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978
[5] E. A. Grebenikov, “Two new dynamical models in celestial mechanics”, Romanian Astron. J., 8:1 (1998), 13–19
[6] E. A. Grebenikov, D. Kozak-Skovorodkina, M. Yakubyak, Metody kompyuternoi algebry v probleme mnogikh tel, Izd-vo RUDN, M., 2002 | Zbl
[7] A. N. Prokopenya, “Studying stability of the equilibrium solutions in the restricted many-body problems”, Challenging the boundaries of symbolic computation, Proc. of the 5th International Mathematica Symposium, eds. P. Mitic, Ph. Ramsden, J. Carne, Imperial College Press, London, 2003, 105–112
[8] K. A. Sitnikov, “Suschestvovanie ostsilliruyuschikh dvizhenii v zadache trekh tel”, Dokl. AN SSSR, 133:2 (1960), 303–306 | MR | Zbl
[9] E. A. Grebenikov, “Suschestvovanie tochnykh simmetrichnykh reshenii v ploskoi nyutonovoi probleme mnogikh tel”, Matem. Modelirovanie, 10:8 (1998), 74–80 | MR
[10] G. N. Duboshin, Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1975
[11] S. Wolfram, The Mathematica book, 4th ed., Cambridge University Press, 1999 | MR | Zbl
[12] E. A. Grebenikov, A. N. Prokopenya, “Determination of the boundaries between the domains of stability and instability for the Hill's Equation”, Nonlinear Oscillations, 6:1 (2003), 42–51 | DOI | MR | Zbl
[13] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, ed. Myuntts G., Merkurii-Press, Cherepovets, 2000
[14] A. N. Prokopenya, “Normalizatsiya neavtonomnoi lineinoi gamiltonovoi sistemy s malym parametrom”, Matem. modelirovanie, 17:6 (2005), 33–42 | MR | Zbl
[15] Dzh. D. Birkgof, Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999
[16] V. I. Arnold, “Ob ustoichivosti polozhenii ravnovesiya gamiltonovoi sistemy obyknovennykh differentsialnykh uravnenii v obschem ellipticheskom sluchae”, Dokl. AN SSSR, 137:2 (1961), 255–257 | MR
[17] Yu. Mozer, KAM-teoriya i problemy ustoichivosti, NITs RKhD, Izhevsk, 2001 | Zbl