Pml development on the base of Laguerre transform application
Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to bound the computational area for implementation of 3D numerical simulation of elastic waves propagation is considered. In order to do that the special choice of Perfectly Matched Layers (PML) is introduced into consideration on the base of Laguerre transformation with respect to time. These PML happened to be unsplit ones and are well-posed. These features allow to reduce essentially the quantity of unknowns within PML and to avoid instability of numerical solution. Results of numerical experimentations are presented.
@article{MM_2006_18_10_a8,
     author = {G. V. Reshetova and V. A. Tcheverda},
     title = {Pml development on the base of {Laguerre} transform application},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {18},
     number = {10},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a8/}
}
TY  - JOUR
AU  - G. V. Reshetova
AU  - V. A. Tcheverda
TI  - Pml development on the base of Laguerre transform application
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 91
EP  - 101
VL  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_10_a8/
LA  - ru
ID  - MM_2006_18_10_a8
ER  - 
%0 Journal Article
%A G. V. Reshetova
%A V. A. Tcheverda
%T Pml development on the base of Laguerre transform application
%J Matematičeskoe modelirovanie
%D 2006
%P 91-101
%V 18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_10_a8/
%G ru
%F MM_2006_18_10_a8
G. V. Reshetova; V. A. Tcheverda. Pml development on the base of Laguerre transform application. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 91-101. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a8/

[1] Pozdnyakov V. A., Safonov D. V., Cheverda V. A., “Optimizatsiya parametrov fokusiruyuschikh preobrazovanii s ispolzovaniem chislennogo modelirovaniya”, Geologiya i geofizika, 2000, no. 6, 930–938

[2] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v difraktsii korotkikh voln, Nauka, M., 1972 | MR

[3] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[4] Klem-Musatov K. D., Teoriya kraevykh voln i ee primenenie v seismike, Nauka, Novosibirsk, 1980

[5] Graves R. W., “Simulating seismic wave propagation in 3d elastic media using staggered grid finite difference”, Bulletin of seismic Society of America, 86 (1996), 1091–1106 | MR

[6] Hustedt B., Operto S., Virieux J., “Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling”, Geophysical Journal International, 157 (2004), 1269–1296 | DOI

[7] Levander A. R., “Fourth-order finite-difference P-SV seismograms”, Geophysics, 53 (1988), 1425–1436 | DOI

[8] Pratt R. G., Shin C., Hicks G. J., “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion”, Geophys. J. Int., 133 (1998), 341–362 | DOI

[9] Virieux J., “Velocity-stress finite-difference method”, Geophysics, 1986, no. 51, 889–901 | DOI

[10] Berenger J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl

[11] W. C. Chew, Q. H. Liu., “Perfectly matched layers for elastodynamics: A new absorbing boundary condition”, Journal of Computational Acoustics, 4:4 (1996), 341–359 | DOI | MR

[12] Collino F., Tsogka C., “Application of PML absorbing layer model to the linear elastodynamic problem in ani-sotropic heterogeneous media”, Geophysics, 66 (2001), 294–307 | DOI

[13] Abarbanel S., Gottlieb S., Hesthaven J. S., “Long time behavior of the perfectly matched layer equations in computational electromagnetics”, Journal of Scientific Computing, 17 (2002), 405–422 | DOI | MR | Zbl

[14] Becache E., Petropoulos P. G., Gedney S. G., On the long-time behavior of unsplit perfectly matched layers, INRIA Rapport de Recherche, No 4538

[15] Saad Y., Iterative methods for sparse linear systems, PWS Publishing Company, 1995 | MR

[16] Saad Y., Van der Vorst H. A., “Iterative solution of linear systems in the 20th century”, J. Comput. Appl. Math., 123:1–2 (2000), 1–33 | DOI | MR | Zbl

[17] Konyukh (Reshetova) G. V., Mikhailenko B. G., Mikhailov A. A., “Application of the integral Laguerre trans-forms for forward seismic modeling”, Journal of Computational Acoustics, 9:3 (2001), 1523–1541 | MR

[18] Konyukh (Reshetova) G. V., Mikhailenko B. G., “Primenenie integralnogo preobrazovaniya Lagerra pri reshenii dinamicheskikh zadach seismiki”, Trudy IVMiMG SO RAN, Ser. Matematicheskoe modelirovanie v geofizike, 1998, no. 5, 106–123

[19] Krukier L. A., Lapshina O.A., “Chislennoe sravnenie variatsionnykh metodov resheniya SLAU, poluchaemykh pri konechno-raznostnoi approksimatsii uravneniya konvektsii-diffuzii”, Matem. modelirovanie, 16:4 (2004), 23–32 | MR | Zbl

[20] Sonneveld P., “CGS, a fast Lanczos-type solver for nonsymmetric linear system”, SIAM Journal of Scientific and Statistical Computing, 10 (1989), 36–52 | DOI | MR | Zbl

[21] R. D. da Cunha, T. Hopkins, PIM 2.0: The Parallel Iterative Methods Package for Systems of Linear Equations. User's Guide (Fortran 77 version), Report 1-96, Computing Laboratory, University of Kent at Canter-bury, Canterbury, Kent CT2 7NF, U.K., 1996

[22] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1974 | MR