Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_10_a8, author = {G. V. Reshetova and V. A. Tcheverda}, title = {Pml development on the base of {Laguerre} transform application}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {91--101}, publisher = {mathdoc}, volume = {18}, number = {10}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a8/} }
G. V. Reshetova; V. A. Tcheverda. Pml development on the base of Laguerre transform application. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 91-101. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a8/
[1] Pozdnyakov V. A., Safonov D. V., Cheverda V. A., “Optimizatsiya parametrov fokusiruyuschikh preobrazovanii s ispolzovaniem chislennogo modelirovaniya”, Geologiya i geofizika, 2000, no. 6, 930–938
[2] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v difraktsii korotkikh voln, Nauka, M., 1972 | MR
[3] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[4] Klem-Musatov K. D., Teoriya kraevykh voln i ee primenenie v seismike, Nauka, Novosibirsk, 1980
[5] Graves R. W., “Simulating seismic wave propagation in 3d elastic media using staggered grid finite difference”, Bulletin of seismic Society of America, 86 (1996), 1091–1106 | MR
[6] Hustedt B., Operto S., Virieux J., “Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling”, Geophysical Journal International, 157 (2004), 1269–1296 | DOI
[7] Levander A. R., “Fourth-order finite-difference P-SV seismograms”, Geophysics, 53 (1988), 1425–1436 | DOI
[8] Pratt R. G., Shin C., Hicks G. J., “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion”, Geophys. J. Int., 133 (1998), 341–362 | DOI
[9] Virieux J., “Velocity-stress finite-difference method”, Geophysics, 1986, no. 51, 889–901 | DOI
[10] Berenger J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl
[11] W. C. Chew, Q. H. Liu., “Perfectly matched layers for elastodynamics: A new absorbing boundary condition”, Journal of Computational Acoustics, 4:4 (1996), 341–359 | DOI | MR
[12] Collino F., Tsogka C., “Application of PML absorbing layer model to the linear elastodynamic problem in ani-sotropic heterogeneous media”, Geophysics, 66 (2001), 294–307 | DOI
[13] Abarbanel S., Gottlieb S., Hesthaven J. S., “Long time behavior of the perfectly matched layer equations in computational electromagnetics”, Journal of Scientific Computing, 17 (2002), 405–422 | DOI | MR | Zbl
[14] Becache E., Petropoulos P. G., Gedney S. G., On the long-time behavior of unsplit perfectly matched layers, INRIA Rapport de Recherche, No 4538
[15] Saad Y., Iterative methods for sparse linear systems, PWS Publishing Company, 1995 | MR
[16] Saad Y., Van der Vorst H. A., “Iterative solution of linear systems in the 20th century”, J. Comput. Appl. Math., 123:1–2 (2000), 1–33 | DOI | MR | Zbl
[17] Konyukh (Reshetova) G. V., Mikhailenko B. G., Mikhailov A. A., “Application of the integral Laguerre trans-forms for forward seismic modeling”, Journal of Computational Acoustics, 9:3 (2001), 1523–1541 | MR
[18] Konyukh (Reshetova) G. V., Mikhailenko B. G., “Primenenie integralnogo preobrazovaniya Lagerra pri reshenii dinamicheskikh zadach seismiki”, Trudy IVMiMG SO RAN, Ser. Matematicheskoe modelirovanie v geofizike, 1998, no. 5, 106–123
[19] Krukier L. A., Lapshina O.A., “Chislennoe sravnenie variatsionnykh metodov resheniya SLAU, poluchaemykh pri konechno-raznostnoi approksimatsii uravneniya konvektsii-diffuzii”, Matem. modelirovanie, 16:4 (2004), 23–32 | MR | Zbl
[20] Sonneveld P., “CGS, a fast Lanczos-type solver for nonsymmetric linear system”, SIAM Journal of Scientific and Statistical Computing, 10 (1989), 36–52 | DOI | MR | Zbl
[21] R. D. da Cunha, T. Hopkins, PIM 2.0: The Parallel Iterative Methods Package for Systems of Linear Equations. User's Guide (Fortran 77 version), Report 1-96, Computing Laboratory, University of Kent at Canter-bury, Canterbury, Kent CT2 7NF, U.K., 1996
[22] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1974 | MR