Non-equilibrium two phase filtration
Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 19-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we analyze a boundary-value problem of a Goursat type for non-equilibrium two-phase filtrations equations. We demonstrate consistency of initial and boundary conditions in the sense of existence of a continuous solution. In a special case for Backley–Leveret linear function we obtain the faithful solution depending on boundary conditions.
@article{MM_2006_18_10_a2,
     author = {G. T. Bulgakova and T. A. Faizullin and A. V. Zhiber},
     title = {Non-equilibrium two phase filtration},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {18},
     number = {10},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a2/}
}
TY  - JOUR
AU  - G. T. Bulgakova
AU  - T. A. Faizullin
AU  - A. V. Zhiber
TI  - Non-equilibrium two phase filtration
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 19
EP  - 38
VL  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_10_a2/
LA  - ru
ID  - MM_2006_18_10_a2
ER  - 
%0 Journal Article
%A G. T. Bulgakova
%A T. A. Faizullin
%A A. V. Zhiber
%T Non-equilibrium two phase filtration
%J Matematičeskoe modelirovanie
%D 2006
%P 19-38
%V 18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_10_a2/
%G ru
%F MM_2006_18_10_a2
G. T. Bulgakova; T. A. Faizullin; A. V. Zhiber. Non-equilibrium two phase filtration. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 19-38. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a2/

[1] Entov V. M., Chen-Sin E., “Mikromekhanika dvukhfaznogo techeniya v poristykh sredakh”, Chislennye metody resheniya zadach filtratsii mnogofaznoi neszhimaemoi zhidkosti, ITPM, Novosibirsk, 1987, 120–129

[2] Martos V. N., Ryzhik V. M., “Opredelenie dinamicheskikh krivykh kapillyarnogo davleniya metodom stabilizirovannoi zony”, Izv. AN SSSR. MZhG, 1972, no. 2, 57–60

[3] Karachurin N. T., Kondarattsev S. A., Khasanov M. M., “K obratnoi zadache teorii dvukhfaznoi filtratsii”, PMM, 60:3 (1996), 489–493 | MR | Zbl

[4] Nikolaevskii V. N., Bondarev E. A., Mirkin M. I. i dr., Dvizhenie uglevodorodnykh smesei v poristoi srede, Nedra, M., 1968

[5] Barenblatt G. I., Vinnichenko A. P., Uspekhi mekhaniki, 3:3 (1980), 35–50 | MR

[6] Entov V. M., “K teorii neravnovesnykh effektov pri filtratsii neodnorodnykh zhidkostei”, Izv. AN SSSR. MZhG, 3 (1980), 52–58

[7] Bocharov O. B., Vitovskii O. V., Kuznetsov V. V., “Struktura skachkov nasyschennosti pri neravnovesnom vytesnenii v poristykh sredakh”, Izv. AN SSSR. MZhG, 1990, no. 6, 97–104 | Zbl

[8] Kosterin A. V., “Ob uravneniyakh neravnovesnoi filtratsii”, IFZh, 39:1 (1980), 77–80 | MR

[9] Osipov P. P. Balayan N. M., “Klassifikatsiya lineinykh relaksatsionnykh modelei dvukhfaznoi filtratsii”, IFZh, 53:2 (1987), 253–258

[10] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[11] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[12] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[13] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, T. 2, Nauka, M., 1963

[14] Beitman G., Erdein A., Tablitsy integralnykh preobrazovanii, T. 1, Nauka, M., 1969

[15] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. N., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1976 | MR | Zbl

[16] Bulgakova G. T., Zhiber A. V., Faizullin T. A., “K teorii neravnovesnykh effektov pri filtratsii neodnorodnykh zhidkostei”, Vestnik UGATU, 5:2(10) (2004), 52–57