Dimensionality control method for economy dynamics models
Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 113-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method for regularity control of mathematical models of economy in system of modelling support ECOMOD is described. Method includes the procedure for finding maximal subgroup of group of scaling transformations, that preserves the relations of the model. It besides takes into acount some additional dimensional requirements, that system of relations in itself does not contain. These substantial requirements can be formalized so that it is possible to draw a conclusion about the regularity of the model from the correspondence between existing maximal subgroup and additional requirements. Also the method for finding automodel solutions is presented, that exploits the same procedure. It is based on the system of measurement units, that contains dimensions of material and financial assets along with dimension of time and all dimensions derived from them. Some independent growth rate is then assigned to each of the base dimensions, and growth rates of all dynamic variables are expressed using their dimensions.
@article{MM_2006_18_10_a10,
     author = {I. G. Pospelov and M. A. Khokhlov},
     title = {Dimensionality control method for economy dynamics models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--122},
     publisher = {mathdoc},
     volume = {18},
     number = {10},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a10/}
}
TY  - JOUR
AU  - I. G. Pospelov
AU  - M. A. Khokhlov
TI  - Dimensionality control method for economy dynamics models
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 113
EP  - 122
VL  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_10_a10/
LA  - ru
ID  - MM_2006_18_10_a10
ER  - 
%0 Journal Article
%A I. G. Pospelov
%A M. A. Khokhlov
%T Dimensionality control method for economy dynamics models
%J Matematičeskoe modelirovanie
%D 2006
%P 113-122
%V 18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_10_a10/
%G ru
%F MM_2006_18_10_a10
I. G. Pospelov; M. A. Khokhlov. Dimensionality control method for economy dynamics models. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 113-122. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a10/

[1] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Nauka. Fizmatlit, M., 1987 | MR

[2] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka. Fizmatlit, M., 1978 | MR

[3] Polyakov A. M., Kalibrovochnye polya i struny, ITF im. Landau, M., 1994

[4] Komarov S. I., Petrov A. A., Pospelov I. G., Pospelova L. Ya., “Predstavlenie znanii, soderzhaschikhsya v matematicheskikh modelyakh ekonomiki”, Teoriya i sistemy upravleniya, 1995, no. 5 | MR

[5] Zavriev N. K., Pospelov I. G., Pospelova L. Ya., Chukanov S. V., Razvitie sistemy podderzhki matematicheskogo modelirovaniya ekonomiki EKOMOD, VTs RAN, M., 1999

[6] Zavriev N. K., Pospelov I. G., Pospelova L. Ya. i dr., Uroki ekspluatatsii sistemy EKOMOD i novye perspektivy, VTs RAN, M., 2003

[7] Monagan M. B., Geddes K. O., Heal K. M. et al., MAPLE 9. Introductory Programming Guide, Maplesoft, a division of Waterloo Maple Inc., 2003

[8] Zavriev N. K., Pospelova L. Ya., Pospelov I. G., “Issledovanie matematicheskikh modelei ekonomiki sredstvami instrumentalnoi sistemy EKOMOD”, Matem. modelirovanie, 15:8 (2003), 57–74 | Zbl

[9] Pospelov I. G., Modelirovanie ekonomicheskikh struktur, FAZIS, VTs RAN, M., 2003