Mathematical modeling of filtration processes and poro-elasticity
Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 113-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The filtration processes may lead to the appearance of large gradients of pore pressure. It produces a set of main-caused results partially, the seismic activity may be increased. If there are cracks in the formation the pore pressure gradients may excite the shear strains inducing the slipping down processes along the crack. Besides local stress influences the processes near the wells essentially including the fluid-fracturing phenomenon. In this article the set of processes in the saturated porous media is considered according to the quasi-stationary Biot model if both the standard poro-elasticity problem and double-porosity one being examined.
@article{MM_2005_17_9_a10,
     author = {T. T. Garipov and M. Yu. Zaslavsky and A. Kh. Pergament},
     title = {Mathematical modeling of filtration processes and poro-elasticity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {17},
     number = {9},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_9_a10/}
}
TY  - JOUR
AU  - T. T. Garipov
AU  - M. Yu. Zaslavsky
AU  - A. Kh. Pergament
TI  - Mathematical modeling of filtration processes and poro-elasticity
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 113
EP  - 128
VL  - 17
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_9_a10/
LA  - ru
ID  - MM_2005_17_9_a10
ER  - 
%0 Journal Article
%A T. T. Garipov
%A M. Yu. Zaslavsky
%A A. Kh. Pergament
%T Mathematical modeling of filtration processes and poro-elasticity
%J Matematičeskoe modelirovanie
%D 2005
%P 113-128
%V 17
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_9_a10/
%G ru
%F MM_2005_17_9_a10
T. T. Garipov; M. Yu. Zaslavsky; A. Kh. Pergament. Mathematical modeling of filtration processes and poro-elasticity. Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 113-128. http://geodesic.mathdoc.fr/item/MM_2005_17_9_a10/

[1] T. P. Belousov, I. A. Iskakov i dr., “Aktivnye razlomy, napryazhennye sostoyaniya i seismichnost Yugo-vostochnogo Tatarstana”, Seismichnost i seismicheskoe raionirovanie Severnoi Evrazii, Vyp. 2–3, IFZ RAN, M., 1995, 90–108

[2] S. B. Turuntaev, I. V. Gorbunova, “O kharaktere mnozhestvennogo razrusheniya v ochagovoi zone Gazliiskikh mestorozhdenii”, Fizika zemli, 1989, no. 6, 72–78

[3] A. V. Koldoba, A. Kh. Pergament, Yu. A. Poveschenko, N. A. Simus, “Napryazhenno-deformirovannoe sostoyanie nasyschennoi poristoi sredy, vyzvannoe filtratsiei zhidkosti”, Matem. modelirovanie, 11:10 (1999), 3–16

[4] M. A. Biot, “Mechanics of deformation and acoustic propagation”, J. of Applied Physics, 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[5] Dzh. Rais, Mekhanika ochaga zemletryaseniya, Mir, 1982

[6] J. R. Rice, M. P. Cleary, “Some Basic Stress Diffusion Solutions for Fluid – Saturated Elastic Porous Media”, Reviews of Geophysics and Space Physics, 14:2 (1976), 227–241 | DOI

[7] J. Desrocher, E. Detournay, B. Lenoach, P. Papanstasiou, A. Cheng, “The Crack Tip Region in Hydraulic Fracturing”, Proc. R. Soc. Lond. A, 447 (1994), 39–48 | DOI

[8] A. Z. Averbukh, Kh. Akhiyarov, V. Yu. Zhirevich, A. V. Koldoba, O. N. Kuznetsov, Yu. P. Popov, A. Kh. Pergament, Yu. A. Poveschenko, M. S. Khozyainov, “Matematicheskoe modelirovanie protsessov podzemnoi gidrodinamiki v napryazhenno-deformirovannykh sredakh”, Doklady Akademii Nauk, 340:1 (1995), 51–56

[9] A. Settari, D. A. Walters, Advances in Coupled Geomechanical and Reservoir Modeling with Applications to servoir Compaction, SPE 51927

[10] T. Stone, G. Bowen, P. Papanastasion, Fully Coupled Geomechanics in a Commercial Reservoir Simulator, SPE 65107

[11] Babuska, G. Caloz, J. E. Osborn, “Special finite element methods for a class of second order elliptic problems with rough coefficients”, SIAM J. Numer. Anal., 31:4 (1994), 945–981 | DOI | MR | Zbl

[12] S. Moskow, V. Druskin, T. Habashy, P. Lee, S. Davydycheva, “A finite difference scheme for elliptic equations with rough coefficients using grids nonconforming to interfaces”, SIAM J. Numer. Anal., 36:2 (1999), 442–464 | DOI | MR

[13] V. P. Myasnikov, M. Yu. Zaslavskii, A. Kh. Pergament, “Algoritmy osredneniya dlya resheniya zadach teorii uprugosti na pryamougolnykh setkakh, neadaptirovannykh k strukture sredy (averaging)”, Doklady Akademii Nauk, 394:3 (2004), 332–337 | MR

[14] V. P. Myasnikov, M. Yu. Zaslavskii, A. Kh. Pergament, “Algoritmy osredneniya i metod opornykh operatorov v zadachakh porouprugosti”, Doklady Akademii Nauk, 397:5 (2004), 622

[15] A. A. Samarskii, A. V. Koldoba, Yu. A. Poveschenko, V. V. Tishkin, A. P. Favorskii, Raznostnye skhemy na regulyarnykh setkakh, Minsk, 1996

[16] F. Syarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR