The 2-nd low of thermodynamics for chemical kinetics
Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 106-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general kinetic equations for chemical reactions are under consideration. For these equations the classification was made, decreasing functionals and convergence to the steady state were investigated.
@article{MM_2005_17_8_a8,
     author = {Ya. G. Batishcheva and V. V. Vedenyapin},
     title = {The 2-nd low of thermodynamics for chemical kinetics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {106--110},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/}
}
TY  - JOUR
AU  - Ya. G. Batishcheva
AU  - V. V. Vedenyapin
TI  - The 2-nd low of thermodynamics for chemical kinetics
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 106
EP  - 110
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/
LA  - ru
ID  - MM_2005_17_8_a8
ER  - 
%0 Journal Article
%A Ya. G. Batishcheva
%A V. V. Vedenyapin
%T The 2-nd low of thermodynamics for chemical kinetics
%J Matematičeskoe modelirovanie
%D 2005
%P 106-110
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/
%G ru
%F MM_2005_17_8_a8
Ya. G. Batishcheva; V. V. Vedenyapin. The 2-nd low of thermodynamics for chemical kinetics. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 106-110. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/

[1] Volpert A. I., Khudyaev S. I., Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki, Nauka, M., 1975 | MR

[2] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983 | MR

[3] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 5. Statisticheskaya fizika, Ch. I, Nauka, M., 1976 | MR

[4] Zeldovich Ya. B., “Dokazatelstvo edinstvennosti resheniya uravnenii zakona deistvuyuschikh mass”, Zh. Fiz. Khimii, 11:5 (1938), 658–687 | MR

[5] Orlov V. N., Rozonoer L. I., “Variatsionnyi printsip dlya uravnenii makroskopicheskoi dinamiki i ego primenenie v khimicheskoi kinetike”, ZhVM i MF, 21:5 (1981), 1192–1205 | MR

[6] Gorban A. N., Obkhod ravnovesiya, Nauka, Novosibirsk, 1984 | MR

[7] Nikolis G., Prigozhin I., Poznanie slozhnogo, Mir, M., 1990 | MR

[8] Carr J., “Asymptotic behaviour of solutions to the coagulation-fragmentation equation. I. The strong fragmentation case”, Proc. Royal Soc. Sect. A, 121 (1992), 231–244 | MR | Zbl

[9] Carr J., da Costa F. P., “Asymptotic behavior of solutions to the coagulation-fragmentation equation. I. Weak fragmentation”, J. Stat. Phys., 77:1–2 (1994), 89–244 | DOI | MR

[10] Godunov S. K., Sultangazin U. M., “Diskretnye modeli uravneniya Boltsmana”, Uspekhi matematicheskikh nauk, 26:3(159) (1971), 3–51 | MR | Zbl

[11] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001 | MR