The 2-nd low of thermodynamics for chemical kinetics
Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 106-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general kinetic equations for chemical reactions are under consideration. For these equations the classification was made, decreasing functionals and convergence to the steady state were investigated.
@article{MM_2005_17_8_a8,
     author = {Ya. G. Batishcheva and V. V. Vedenyapin},
     title = {The 2-nd low of thermodynamics for chemical kinetics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {106--110},
     year = {2005},
     volume = {17},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/}
}
TY  - JOUR
AU  - Ya. G. Batishcheva
AU  - V. V. Vedenyapin
TI  - The 2-nd low of thermodynamics for chemical kinetics
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 106
EP  - 110
VL  - 17
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/
LA  - ru
ID  - MM_2005_17_8_a8
ER  - 
%0 Journal Article
%A Ya. G. Batishcheva
%A V. V. Vedenyapin
%T The 2-nd low of thermodynamics for chemical kinetics
%J Matematičeskoe modelirovanie
%D 2005
%P 106-110
%V 17
%N 8
%U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/
%G ru
%F MM_2005_17_8_a8
Ya. G. Batishcheva; V. V. Vedenyapin. The 2-nd low of thermodynamics for chemical kinetics. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 106-110. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a8/

[1] Volpert A. I., Khudyaev S. I., Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki, Nauka, M., 1975 | MR

[2] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983 | MR

[3] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 5. Statisticheskaya fizika, Ch. I, Nauka, M., 1976 | MR

[4] Zeldovich Ya. B., “Dokazatelstvo edinstvennosti resheniya uravnenii zakona deistvuyuschikh mass”, Zh. Fiz. Khimii, 11:5 (1938), 658–687 | MR

[5] Orlov V. N., Rozonoer L. I., “Variatsionnyi printsip dlya uravnenii makroskopicheskoi dinamiki i ego primenenie v khimicheskoi kinetike”, ZhVM i MF, 21:5 (1981), 1192–1205 | MR

[6] Gorban A. N., Obkhod ravnovesiya, Nauka, Novosibirsk, 1984 | MR

[7] Nikolis G., Prigozhin I., Poznanie slozhnogo, Mir, M., 1990 | MR

[8] Carr J., “Asymptotic behaviour of solutions to the coagulation-fragmentation equation. I. The strong fragmentation case”, Proc. Royal Soc. Sect. A, 121 (1992), 231–244 | MR | Zbl

[9] Carr J., da Costa F. P., “Asymptotic behavior of solutions to the coagulation-fragmentation equation. I. Weak fragmentation”, J. Stat. Phys., 77:1–2 (1994), 89–244 | DOI | MR

[10] Godunov S. K., Sultangazin U. M., “Diskretnye modeli uravneniya Boltsmana”, Uspekhi matematicheskikh nauk, 26:3(159) (1971), 3–51 | MR | Zbl

[11] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001 | MR