Numerical simulation of chemically reacting gas-droplet mixtures for combustion chambers of propulsion engines
Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 46-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The proposed paper refers to the numerical simulation of 3D turbulent chemically reacting flows of gas/droplet mixtures, those that are typical for the combustion chamber of a propulsion engine. A model of such flows is composed that depicts the specifics of propellant supply to the combustion chamber including such details as phase change of propellants and gas-droplet interaction. It is also possible to solve conjugated heat transfer task at the same time. The used model bases on the solution of Favre averaged Navier–Stockes system, energy conservation equation and 3D thermal conductivity equation for solid media in combination with the models of phase conversion and chemical reactions. Applicability of such model is discussed and the examples of test and practical solutions are given.
@article{MM_2005_17_8_a4,
     author = {V. A. Volkov and V. N. Gavriliouk and V. Yu. Gidaspov and M. M. Makarov and A. N. Pavlov and V. Yu. Strel'tsov and A. V. Khokhlov},
     title = {Numerical simulation of chemically reacting gas-droplet mixtures for combustion chambers of propulsion engines},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a4/}
}
TY  - JOUR
AU  - V. A. Volkov
AU  - V. N. Gavriliouk
AU  - V. Yu. Gidaspov
AU  - M. M. Makarov
AU  - A. N. Pavlov
AU  - V. Yu. Strel'tsov
AU  - A. V. Khokhlov
TI  - Numerical simulation of chemically reacting gas-droplet mixtures for combustion chambers of propulsion engines
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 46
EP  - 60
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a4/
LA  - ru
ID  - MM_2005_17_8_a4
ER  - 
%0 Journal Article
%A V. A. Volkov
%A V. N. Gavriliouk
%A V. Yu. Gidaspov
%A M. M. Makarov
%A A. N. Pavlov
%A V. Yu. Strel'tsov
%A A. V. Khokhlov
%T Numerical simulation of chemically reacting gas-droplet mixtures for combustion chambers of propulsion engines
%J Matematičeskoe modelirovanie
%D 2005
%P 46-60
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a4/
%G ru
%F MM_2005_17_8_a4
V. A. Volkov; V. N. Gavriliouk; V. Yu. Gidaspov; M. M. Makarov; A. N. Pavlov; V. Yu. Strel'tsov; A. V. Khokhlov. Numerical simulation of chemically reacting gas-droplet mixtures for combustion chambers of propulsion engines. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 46-60. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a4/

[1] Smooke M. D., Reduced kinetic mechanisms and asymptotic approximations for methane-air flames, Lecture Notes in Physics, 384, Springer, NY, 1991

[2] Maas U., Pope S. B., “Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space”, Comb. Flame, 88 (1992), 239–264 | DOI

[3] Maas U., Pope S. B., “Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds”, Proc. Comb. Inst., 24 (1992), 103–112

[4] Warnatz J., Maas U., Dibble R. W., Combustion. Physical and chemical fundamentals, modelling and assumptions, experiments, pollutant formation, Springer, 2001 | Zbl

[5] Spoldig D. B., Gorenie i massoobmen, Mashinostroenie, M., 1985 | MR

[6] Spalding D. B., “Mixing and chemical reaction in steady confined turbulent flames”, 13th Symp. Comb., The Combustion Institute, Pittsburg, 1970, 649

[7] Magnussen B. F., Hjertager B. H., “On mathematical models of turbulent combustion with special emphasis on soot formation and combustion”, 16th Symp. (Int'l.) on Combustion, The Combustion Institute, 1976

[8] Pope S. B., “PDF methods for turbulent reactive flows”, Progress in Energy Combustion Science, 11 (1986), 119–192 | DOI | MR

[9] Pope S. B., “Computations of Turbulent Combustion: Progress and Challenges”, 23rd Symp. Comb., The Combustion Institute, Pittsburgh, 1991, 591

[10] Peters N., The Use of Flamelet Models in CFD-Simulations, Institut für Technische Mechanik, RWTH Aachen, ERCOFTAC-Centre, Germany

[11] Gavriliok V. N., Denisov O. P., Nakonechny V. P., Odintsov E. V., Sergienko A. A., Sobachkin A. A., Numerical Similation of Working Processes in Rocket Engine Combustion Chamber, IAF-93-S.463, October, Graz, Austria, 1993

[12] Krulle G., Gavriliouk V., Schley C.-A. and Sobachkin A., Numerical simulation technology of aerodynamic processes and its applications in rocket engine problems, 45th Congress of the Int. Astronautical Federation, Jerusalem, Israel, October 9–14, 1994, IAF-94-S2.414, 1–12

[13] Hagemann G., Schley C.-A., Odintsov E. and Sobatchkin A., Nozzle flow field analysis with particular regard to 3D-plug-claster configurations, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Lake Buena Vista, FL, July 1–3, 1996, AIAA-96-2954, 1–16

[14] Schley C.-A., Deplanque J., Merkle C., Duthoit V. and Gavriliouk V., Fundamental and technological aspects of combustion chamber modelling, Proc. 3rd Int. Symp. Space Propulsion, Beijing, China, August 11–13, 1997, 1–15

[15] Pavlov A. N., Sazhin S. S., Fedorenko R. P. and Heikal M. R., “A conservative finite difference method and its application for analysis of a transient flow around a square prism”, Int. J. Numer. Methods Heat Fluid Flow, 10:1 (2000), 6–46 | DOI | MR | Zbl

[16] Trottenberg U., Oosterlee C. W., Schüller A., Multigrid, With guest contributions by A. Brandt, P. Oswald, K. Stüben, Academic Press, San Diego, 2001 | MR | Zbl

[17] Gurvich L. V. i dr., Termodinamicheskie svoistva individualnykh veschestv, Spravochnoe izdanie v 4-kh tomakh, Nauka, M., 1982 | MR

[18] Rid R., Prausnits Dzh., Shervud T., Svoistva gazov i zhidkostei, Khimiya, L., 1982, 592 pp. | MR

[19] G. G. Chernyi i S. A. Losev (red.), Fiziko-khimicheskie protsessy v gazovoi dinamike. Spravochnik. T. 2: Fiziko-khimicheskaya kinetika i termodinamika, Nauchno-izdatelskii tsentr mekhaniki, M., 2002, 368 pp.

[20] Faeth G. M., “Evaporation and combustion of sprays”, Prog. Energy Combust. Sci., 9:1–2 (1983), 1–76 | DOI | MR

[21] Volkov V. A., Musin V. R., Pirumov U. G., Prokhorov M. B., Streltsov V. Yu., “Chislennoe modelirovanie protsessa neitralizatsii okisi ugleroda dozirovannym vpryskom vody v vysokotemperaturnuyu smes produktov sgoraniya”, Izvestiya RAN, MZhG, 1993, no. 6, 96–106

[22] Volkov V. A., Gidaspov V. Yu., Pirumov U. G., Streltsov V. Yu., “Chislennoe modelirovanie techenii reagiruyuschikh gazokapelnykh i gazovykh smesei v eksperimentakh po vosplameneniyu metanola”, TVT, 36:3 (1998), 424–434

[23] Westbrook C. K., Dryer F. L., “A Comprehensive mechanism for methanol oxidation”, Comb. Sci. and Tech., 20 (1979), 125–140 | DOI

[24] Robets R., Aceto L. D., Kollrak R. et al., “An Analytical Model for Nitric Oxide Formation in a Gas Turbine Combustor”, AIAA Journal, 10:6 (1972), 820–826 | DOI

[25] Adelman H. G., Browning L. H., Pefley R. K., “Predicted Exhaust Emissions from a Methanol and Jet Fueled Gas Turbine Combustor”, AIAA Journal, 14 (1976), 793–798 | DOI | MR

[26] Sriram V., Steele W. G., AIAA Paper, no 882, 1982, 1–8

[27] Shang H. M. et al., Investigation of Chemical Kinetics Integration Algorithms for Reacting Flows, AIAA Paper 95-0806, 1995

[28] Solntsev V. P., Golubev V. A., “Issledovanie protsessa sgoraniya benzino-vozdushnoi smesi v usloviyakh vzaimodeistviya turbulentnykh sledov, obrazovannykh stabilizatorami”, Izvestiya vysshikh uchebnykh zavedenii MVO SSSR, seriya “Aviatsionnaya tekhnika”, 1959 | Zbl

[29] Lister D., ICAO Engine Exhaust Emission Data Bank, update 2003, based on ICAO doc 9646, 1995

[30] Preclic D. et al., Cryogenic Rocket Calorimeter Chamber Experiments and Heat Transfer Simulations, AIAA 98-3440