Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2005_17_8_a3, author = {S. N. Borovikov and I. A. Kryukov and I. E. Ivanov}, title = {Unstructured triangular mesh generation on curved faces based on {Delaunay} triangulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--45}, publisher = {mathdoc}, volume = {17}, number = {8}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/} }
TY - JOUR AU - S. N. Borovikov AU - I. A. Kryukov AU - I. E. Ivanov TI - Unstructured triangular mesh generation on curved faces based on Delaunay triangulation JO - Matematičeskoe modelirovanie PY - 2005 SP - 31 EP - 45 VL - 17 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/ LA - ru ID - MM_2005_17_8_a3 ER -
%0 Journal Article %A S. N. Borovikov %A I. A. Kryukov %A I. E. Ivanov %T Unstructured triangular mesh generation on curved faces based on Delaunay triangulation %J Matematičeskoe modelirovanie %D 2005 %P 31-45 %V 17 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/ %G ru %F MM_2005_17_8_a3
S. N. Borovikov; I. A. Kryukov; I. E. Ivanov. Unstructured triangular mesh generation on curved faces based on Delaunay triangulation. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 31-45. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/
[1] Hao Chen and Jonathan Bishop, Delaunay Triangulation for Curved Surfaces, Proceedings of the 6th International Meshing Roundtable, Park City, Utah, USA, 1997, October | MR
[2] Frank J. Bossen and Paul S. Heckbert, A Pliant Method for Anisotropic Mesh Generation, Proceedings of the 5th International Meshing Roundtable, Pittsburgh, Pennsylvania, USA, October, 1996 | MR
[3] Charles Boivin and Carl Ollivier-Gooch, “Guaranteed-Quality Triangular Mesh Generation for Domains with Curved Boundaries”, International Journal for Numerical Methods in Engineering, 55:10 (2002), 1185–1213 | DOI | MR | Zbl
[4] S. Fortune, “Voronoi diagrams and Delaunay triangulations”, Computing in Euclidean Geometry, eds. D. Z. Du, F. Hwang, World Scientific, 1992, 193–233 | MR
[5] A. V. Skvortsov, “Obzor algoritmov postroeniya triangulyatsii Delone”, Vychislitelnye metody i programmirovanie, 3 (2002), 14–39 | MR
[6] L. V. Kruglyakova, A. V. Neledova, V. F. Tishkin, A. Yu. Filatov, “Nestrukturirovannye adaptivnye setki dlya zadach matematicheskoi fiziki (obzor)”, Matem. modelirovanie, 10:3 (1998), 93–116 | MR
[7] C. L. Lawson, “Software for $C^1$ Surface Interpolation”, Mathematical Software, III, ed. John R. Rice, Academic Press, New York, 1977, 161–194 | MR
[8] J. R. Shewchuk, “A Condition Guaranteeing the Existence of Higher-Dimensional Constrained Delaunay Triangulations”, Proceedings of the 14th Annual Symposium on Computational Geometry, Association for Computing Machinery, Minneapolis, Minnesota, 1998, 76–85 | MR
[9] J. Ruppert, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation”, Journal of Algorithms, 18:3 (1995), 548–585 | DOI | MR | Zbl
[10] J. R. Shewchuk, “Mesh Generation for Domains with Small Angles”, Proceedings of the 16th Annual Symposium on Computational Geometry, Association for Computing Machinery, Hong Kong, 2000, 1–10 | MR
[11] E. V. Shikin, A. V. Boreskov, Kompyuternaya grafika. Poligonalnye modeli, DIALOG-MIFI, M., 2000 | MR
[12] J. R. Tristano, S. J. Owen, S. A. Canann, Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition, 7th InternationalMeshing Roundtable Proceedings | MR