Unstructured triangular mesh generation on curved faces based on Delaunay triangulation
Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 31-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes surface mesh generation on curved faces. At the beginning an algorithm for surface mesh generation using two-dimensional anisotropic Delaunay triangulation in the parametric space of surface is considered. Then methods for handling curvilinear boundaries that are edges of faces are given. Peculiarities of surface mesh generation arising only in case of curvilinear geometry are also investigated.
@article{MM_2005_17_8_a3,
     author = {S. N. Borovikov and I. A. Kryukov and I. E. Ivanov},
     title = {Unstructured triangular mesh generation on curved faces based on {Delaunay} triangulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/}
}
TY  - JOUR
AU  - S. N. Borovikov
AU  - I. A. Kryukov
AU  - I. E. Ivanov
TI  - Unstructured triangular mesh generation on curved faces based on Delaunay triangulation
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 31
EP  - 45
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/
LA  - ru
ID  - MM_2005_17_8_a3
ER  - 
%0 Journal Article
%A S. N. Borovikov
%A I. A. Kryukov
%A I. E. Ivanov
%T Unstructured triangular mesh generation on curved faces based on Delaunay triangulation
%J Matematičeskoe modelirovanie
%D 2005
%P 31-45
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/
%G ru
%F MM_2005_17_8_a3
S. N. Borovikov; I. A. Kryukov; I. E. Ivanov. Unstructured triangular mesh generation on curved faces based on Delaunay triangulation. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 31-45. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a3/

[1] Hao Chen and Jonathan Bishop, Delaunay Triangulation for Curved Surfaces, Proceedings of the 6th International Meshing Roundtable, Park City, Utah, USA, 1997, October | MR

[2] Frank J. Bossen and Paul S. Heckbert, A Pliant Method for Anisotropic Mesh Generation, Proceedings of the 5th International Meshing Roundtable, Pittsburgh, Pennsylvania, USA, October, 1996 | MR

[3] Charles Boivin and Carl Ollivier-Gooch, “Guaranteed-Quality Triangular Mesh Generation for Domains with Curved Boundaries”, International Journal for Numerical Methods in Engineering, 55:10 (2002), 1185–1213 | DOI | MR | Zbl

[4] S. Fortune, “Voronoi diagrams and Delaunay triangulations”, Computing in Euclidean Geometry, eds. D. Z. Du, F. Hwang, World Scientific, 1992, 193–233 | MR

[5] A. V. Skvortsov, “Obzor algoritmov postroeniya triangulyatsii Delone”, Vychislitelnye metody i programmirovanie, 3 (2002), 14–39 | MR

[6] L. V. Kruglyakova, A. V. Neledova, V. F. Tishkin, A. Yu. Filatov, “Nestrukturirovannye adaptivnye setki dlya zadach matematicheskoi fiziki (obzor)”, Matem. modelirovanie, 10:3 (1998), 93–116 | MR

[7] C. L. Lawson, “Software for $C^1$ Surface Interpolation”, Mathematical Software, III, ed. John R. Rice, Academic Press, New York, 1977, 161–194 | MR

[8] J. R. Shewchuk, “A Condition Guaranteeing the Existence of Higher-Dimensional Constrained Delaunay Triangulations”, Proceedings of the 14th Annual Symposium on Computational Geometry, Association for Computing Machinery, Minneapolis, Minnesota, 1998, 76–85 | MR

[9] J. Ruppert, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation”, Journal of Algorithms, 18:3 (1995), 548–585 | DOI | MR | Zbl

[10] J. R. Shewchuk, “Mesh Generation for Domains with Small Angles”, Proceedings of the 16th Annual Symposium on Computational Geometry, Association for Computing Machinery, Hong Kong, 2000, 1–10 | MR

[11] E. V. Shikin, A. V. Boreskov, Kompyuternaya grafika. Poligonalnye modeli, DIALOG-MIFI, M., 2000 | MR

[12] J. R. Tristano, S. J. Owen, S. A. Canann, Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition, 7th InternationalMeshing Roundtable Proceedings | MR