Cartesian grids methods for numerical solution of Navier--Stokes equations in domains with curvilinear boundaries
Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 15-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the questions for numerical solution of Navier–Stokes equations for incompressible fluid in domains with curvilinear boundary are considered. A brief overview for contemporary approaches for solving problems on Cartesian grids is given. A modification of ghost-cell immersed boundary method with implicit extrapolation procedure for boundary condition approximation on curvilinear boundary is introduced. Numerical solution of test problems for flow in symmetric channel with smooth expansion is carried out. Obtained results are validated by comparison with high precision results, taken as “exact”.
@article{MM_2005_17_8_a2,
     author = {V. V. Vinnikov and D. L. Reviznikov},
     title = {Cartesian grids methods for numerical solution of {Navier--Stokes} equations in domains with curvilinear boundaries},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--30},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/}
}
TY  - JOUR
AU  - V. V. Vinnikov
AU  - D. L. Reviznikov
TI  - Cartesian grids methods for numerical solution of Navier--Stokes equations in domains with curvilinear boundaries
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 15
EP  - 30
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/
LA  - ru
ID  - MM_2005_17_8_a2
ER  - 
%0 Journal Article
%A V. V. Vinnikov
%A D. L. Reviznikov
%T Cartesian grids methods for numerical solution of Navier--Stokes equations in domains with curvilinear boundaries
%J Matematičeskoe modelirovanie
%D 2005
%P 15-30
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/
%G ru
%F MM_2005_17_8_a2
V. V. Vinnikov; D. L. Reviznikov. Cartesian grids methods for numerical solution of Navier--Stokes equations in domains with curvilinear boundaries. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 15-30. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/

[1] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[2] Samarskii A. A., Andreev V. B., Raznostnye skhemy dlya ellipticheskikh uravnenii, Nauka, M., 1976, 352 pp. | MR | Zbl

[3] Ye T., Mittal R., Udaykumar H. S., Shyy W., “An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries”, Journal of Computational Physics, 156 (1999), 209–240 | DOI | MR | Zbl

[4] Kirkpatrick M. P., Armfield S. W., Kent J. H., “A representation of curved boundaries for the solution of the Navier–Stokes equations on a staggered three-dimensional Cartesian grid”, Journal of Computational Physics, 184 (2003), 1–36 | DOI | MR | Zbl

[5] LeVeque R. J., Li Z., “The immersed interface method for elliptic equations with discontinuous coefficients and singular sources”, SIAM Numer. Anal., 31 (1994), 1019–1044 | DOI | MR | Zbl

[6] Ryabenkii V. S., Vvedenie v vychislitelnuyu matematiku, Nauka, M., 1994, 336 pp. | MR

[7] Ryaben'kii V. S., Tsynkov S. V., An Application of the Difference Potentials Method to Solving External Problems in CFD, NASA Technical Memorandum 110338, 1997

[8] Vabischevich P. N., Metod fiktivnykh oblastei dlya zadachi matematicheskoi fiziki, MGU, M., 1992, 156 pp.

[9] Smagulov Sh. S., Temirbekov N. M., Kamaubaev K. S., “Modelirovanie metodom fiktivnykh oblastei granichnogo usloviya dlya davleniya v zadachakh techeniya vyazkoi zhidkosti”, Sib. zhurn. vychisl. matematiki, 3:1 (2000), 57–71 | MR | Zbl

[10] Glowinski R., Pan T. W., Hesla T. I., Joseph D. D., Periaux J., “A Distributed Lagrange Multiplier/Fictitious Domain Method for Flows around Moving Rigid Bodies: Application to Particulate Flow”, International Journal for Numerical Methods in Fluids, 30 (1999), 1043–1066 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Bakhvalov N. S., Knyazev A. V., “Fictitious domain methods and computation of homogenized properties of composites with a periodic structure of essentially different components”, Numerical Methods and Applications, CRC Press, 1994, 221–276 | MR

[12] Torgeir R., Vassilevski P. S., Winther R., “Domain Embedding Preconditioners For Mixed Systems”, Numer. Linear Algebra Appl., 5 (1998), 321–345 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[13] Artemov V. I., Yankov G. G., Karpov V. E., Makarov M. V., “Chislennoe modelirovanie protsessov teplo- i massoobmena v elementakh teplotekhnicheskogo i energeticheskogo oborudovaniya”, Teploenergetika, 2000, no. 7, 52–59

[14] Peskin C. S., “The immersed boundary method”, Acta Numerica, 11 (2002), 479–517 | DOI | MR | Zbl

[15] Kim J., Kim D., Choi H., “An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries”, Journal of Computational Physics, 171 (2001), 132–150 | DOI | MR | Zbl

[16] Tseng Y. H., Ferziger J. H., “A ghost-cell immersed boundary method for flow in complex geometry”, Journal of Computational Physics, 192 (2003), 593–623 | DOI | MR | Zbl

[17] Lima E., Silva A. L. F., Silveira-Neto A., Damasceno J. J. R., “Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method”, Journal of Computational Physics, 189 (2003), 351–370 | DOI | MR | Zbl

[18] Li Z., Lin T., Wu X., “New Cartesian grid methods for interface problems using the finite element formulation”, Numerische Mathematik, 96 (2003), 61–98, sm. takzhe NCSU CRSC-TR99-5, 1999 | DOI | MR | Zbl

[19] Zhang L., Gerstenberger A., Wang X., Liu W. K., “Immersed Finite Element Method”, Computer Methods in Applied Mechanics and Engineering, 193 (2004), 2051–2067 | DOI | MR | Zbl

[20] Aftosmis M. J., Berger M. J., Adomavicius G., A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embeded Boundaries, AIAA paper no 2000-0808, 2000 | MR

[21] Murman S. M., Aftosmis M. J., Berger M. J., Implicit Approaches for Moving Boundaries in a 3-D Cartesian Method, AIAA paper no 2003-1119, 2003

[22] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.

[23] Kim J., Moin P., “Application of a fractional step method to incompressible Navier–Stokes equations”, Journal of Computational Physics, 59 (1985), 308–323 | DOI | MR | Zbl

[24] Brown D. L., Cortez R., Minion M. L., “Accurate Projection Methods for the Incompressible Navier–Stokes Equations”, Journal of Computational Physics, 168 (2001), 464–499 | DOI | MR | Zbl

[25] Chorin T. J., “Numerical solution of the Navier–Stokes equations”, Math. Comput., 22 (1968), 745–762 | DOI | MR | Zbl

[26] Rhie C. M., Chow W. L., “A numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA J., 21:11 (1983), 1525–1532 | DOI | Zbl

[27] Roache P., “Scaling of High Reynolds Number Weakly Separated Channel Flows”, Proceedings Symposium on Numerical and Physical Aspects of Aerodynamics Flows (19–21 January 1981), California State University, Long Beach, 87–98 | MR | Zbl

[28] Vasiltsov G. L., Kryukov I. A., Chislennyi metod resheniya uravnenii Nave–Stoksa, opisyvayuschikh techeniya neszhimaemoi vyazkoi zhidkosti, na kollokatsionnoi krivolineinoi setke, Preprint No 594, Institut problem mekhaniki RAN, Moskva, 1997

[29] Napolitano M., Orlandi P., “Laminar Flow in Complex Geometry A Comparison”, International Journal for Numerical Methods in Fluids, 5 (1985), 667–683 | DOI | MR

[30] Cliffe K. A., Jackso C. P., Greenfield A. G., Finite Element Solutions for Flow in a Symmetric Channel with Smooth Expansion, AERE-R No 10608, 1982

[31] van der Vorst H. A., “Krylov subspace iteration”, Computing in Science Engineering, 2:1 (2000), 32–37 | DOI | MR