Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2005_17_8_a2, author = {V. V. Vinnikov and D. L. Reviznikov}, title = {Cartesian grids methods for numerical solution of {Navier--Stokes} equations in domains with curvilinear boundaries}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {15--30}, publisher = {mathdoc}, volume = {17}, number = {8}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/} }
TY - JOUR AU - V. V. Vinnikov AU - D. L. Reviznikov TI - Cartesian grids methods for numerical solution of Navier--Stokes equations in domains with curvilinear boundaries JO - Matematičeskoe modelirovanie PY - 2005 SP - 15 EP - 30 VL - 17 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/ LA - ru ID - MM_2005_17_8_a2 ER -
%0 Journal Article %A V. V. Vinnikov %A D. L. Reviznikov %T Cartesian grids methods for numerical solution of Navier--Stokes equations in domains with curvilinear boundaries %J Matematičeskoe modelirovanie %D 2005 %P 15-30 %V 17 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/ %G ru %F MM_2005_17_8_a2
V. V. Vinnikov; D. L. Reviznikov. Cartesian grids methods for numerical solution of Navier--Stokes equations in domains with curvilinear boundaries. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 15-30. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a2/
[1] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR
[2] Samarskii A. A., Andreev V. B., Raznostnye skhemy dlya ellipticheskikh uravnenii, Nauka, M., 1976, 352 pp. | MR | Zbl
[3] Ye T., Mittal R., Udaykumar H. S., Shyy W., “An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries”, Journal of Computational Physics, 156 (1999), 209–240 | DOI | MR | Zbl
[4] Kirkpatrick M. P., Armfield S. W., Kent J. H., “A representation of curved boundaries for the solution of the Navier–Stokes equations on a staggered three-dimensional Cartesian grid”, Journal of Computational Physics, 184 (2003), 1–36 | DOI | MR | Zbl
[5] LeVeque R. J., Li Z., “The immersed interface method for elliptic equations with discontinuous coefficients and singular sources”, SIAM Numer. Anal., 31 (1994), 1019–1044 | DOI | MR | Zbl
[6] Ryabenkii V. S., Vvedenie v vychislitelnuyu matematiku, Nauka, M., 1994, 336 pp. | MR
[7] Ryaben'kii V. S., Tsynkov S. V., An Application of the Difference Potentials Method to Solving External Problems in CFD, NASA Technical Memorandum 110338, 1997
[8] Vabischevich P. N., Metod fiktivnykh oblastei dlya zadachi matematicheskoi fiziki, MGU, M., 1992, 156 pp.
[9] Smagulov Sh. S., Temirbekov N. M., Kamaubaev K. S., “Modelirovanie metodom fiktivnykh oblastei granichnogo usloviya dlya davleniya v zadachakh techeniya vyazkoi zhidkosti”, Sib. zhurn. vychisl. matematiki, 3:1 (2000), 57–71 | MR | Zbl
[10] Glowinski R., Pan T. W., Hesla T. I., Joseph D. D., Periaux J., “A Distributed Lagrange Multiplier/Fictitious Domain Method for Flows around Moving Rigid Bodies: Application to Particulate Flow”, International Journal for Numerical Methods in Fluids, 30 (1999), 1043–1066 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Bakhvalov N. S., Knyazev A. V., “Fictitious domain methods and computation of homogenized properties of composites with a periodic structure of essentially different components”, Numerical Methods and Applications, CRC Press, 1994, 221–276 | MR
[12] Torgeir R., Vassilevski P. S., Winther R., “Domain Embedding Preconditioners For Mixed Systems”, Numer. Linear Algebra Appl., 5 (1998), 321–345 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[13] Artemov V. I., Yankov G. G., Karpov V. E., Makarov M. V., “Chislennoe modelirovanie protsessov teplo- i massoobmena v elementakh teplotekhnicheskogo i energeticheskogo oborudovaniya”, Teploenergetika, 2000, no. 7, 52–59
[14] Peskin C. S., “The immersed boundary method”, Acta Numerica, 11 (2002), 479–517 | DOI | MR | Zbl
[15] Kim J., Kim D., Choi H., “An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries”, Journal of Computational Physics, 171 (2001), 132–150 | DOI | MR | Zbl
[16] Tseng Y. H., Ferziger J. H., “A ghost-cell immersed boundary method for flow in complex geometry”, Journal of Computational Physics, 192 (2003), 593–623 | DOI | MR | Zbl
[17] Lima E., Silva A. L. F., Silveira-Neto A., Damasceno J. J. R., “Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method”, Journal of Computational Physics, 189 (2003), 351–370 | DOI | MR | Zbl
[18] Li Z., Lin T., Wu X., “New Cartesian grid methods for interface problems using the finite element formulation”, Numerische Mathematik, 96 (2003), 61–98, sm. takzhe NCSU CRSC-TR99-5, 1999 | DOI | MR | Zbl
[19] Zhang L., Gerstenberger A., Wang X., Liu W. K., “Immersed Finite Element Method”, Computer Methods in Applied Mechanics and Engineering, 193 (2004), 2051–2067 | DOI | MR | Zbl
[20] Aftosmis M. J., Berger M. J., Adomavicius G., A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embeded Boundaries, AIAA paper no 2000-0808, 2000 | MR
[21] Murman S. M., Aftosmis M. J., Berger M. J., Implicit Approaches for Moving Boundaries in a 3-D Cartesian Method, AIAA paper no 2003-1119, 2003
[22] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.
[23] Kim J., Moin P., “Application of a fractional step method to incompressible Navier–Stokes equations”, Journal of Computational Physics, 59 (1985), 308–323 | DOI | MR | Zbl
[24] Brown D. L., Cortez R., Minion M. L., “Accurate Projection Methods for the Incompressible Navier–Stokes Equations”, Journal of Computational Physics, 168 (2001), 464–499 | DOI | MR | Zbl
[25] Chorin T. J., “Numerical solution of the Navier–Stokes equations”, Math. Comput., 22 (1968), 745–762 | DOI | MR | Zbl
[26] Rhie C. M., Chow W. L., “A numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA J., 21:11 (1983), 1525–1532 | DOI | Zbl
[27] Roache P., “Scaling of High Reynolds Number Weakly Separated Channel Flows”, Proceedings Symposium on Numerical and Physical Aspects of Aerodynamics Flows (19–21 January 1981), California State University, Long Beach, 87–98 | MR | Zbl
[28] Vasiltsov G. L., Kryukov I. A., Chislennyi metod resheniya uravnenii Nave–Stoksa, opisyvayuschikh techeniya neszhimaemoi vyazkoi zhidkosti, na kollokatsionnoi krivolineinoi setke, Preprint No 594, Institut problem mekhaniki RAN, Moskva, 1997
[29] Napolitano M., Orlandi P., “Laminar Flow in Complex Geometry A Comparison”, International Journal for Numerical Methods in Fluids, 5 (1985), 667–683 | DOI | MR
[30] Cliffe K. A., Jackso C. P., Greenfield A. G., Finite Element Solutions for Flow in a Symmetric Channel with Smooth Expansion, AERE-R No 10608, 1982
[31] van der Vorst H. A., “Krylov subspace iteration”, Computing in Science Engineering, 2:1 (2000), 32–37 | DOI | MR