Dual basises in models of continua interacting with electromagnetic field
Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 94-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of models of the continuum interacting with an electromagnetic field is considered. Such characteristic as vectors of an induction and intensity of a kinematic field are introduced at model construction. The description of three-dimensional dual basis is given taking into account vectors of an induction and intensity of electric, magnetic and kinematic fields: vectors of intensity are incorporated in initial basis, and vectors of induction – in mutual basis. The equations of material relations between vectors in these bases are resulted. Physical magnitudes are algebraic correlation in dual bases are determined. Conditions of conservation of some physical magnitudes are formulated. The decision diagram of the equations for fields trapped in medium is resulted. The system of the equations is analyzed in which Maxwell’s equations and the equations for an induction of a kinematic field of the moving medium are included.
@article{MM_2005_17_7_a9,
     author = {G. Ya. Skryabov},
     title = {Dual basises in models of continua interacting with electromagnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {94--102},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_7_a9/}
}
TY  - JOUR
AU  - G. Ya. Skryabov
TI  - Dual basises in models of continua interacting with electromagnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 94
EP  - 102
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_7_a9/
LA  - ru
ID  - MM_2005_17_7_a9
ER  - 
%0 Journal Article
%A G. Ya. Skryabov
%T Dual basises in models of continua interacting with electromagnetic field
%J Matematičeskoe modelirovanie
%D 2005
%P 94-102
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_7_a9/
%G ru
%F MM_2005_17_7_a9
G. Ya. Skryabov. Dual basises in models of continua interacting with electromagnetic field. Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 94-102. http://geodesic.mathdoc.fr/item/MM_2005_17_7_a9/

[1] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 512 pp. | MR

[2] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Per. s angl., Mir, M., 1975, 592 pp. | MR

[3] Sedov L. I., Mekhanika sploshnoi sredy, t. 1, Nauka, M., 1983, 528 pp. | MR

[4] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Nauka, M., 1986, 304 pp. | MR

[5] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, Nauka, Fizmatlit, M., 1997, 320 pp. | MR

[6] Parsell E., Elektrichestvo i magnetizm, Per. s angl., Nauka, M., 1975, 440 pp. | MR

[7] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya, Nauka, M., 1965, 426 pp. | MR

[8] Kauling T., Magnitnaya gidrodinamika, Per. s angl., Atomizdat, M., 1978, 144 pp. | MR