Numeric solution of heat conduction problem for friction couples having low interference coefficient
Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 23-30
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of heat conduction with frictional heat release is solved using the method of finite differences. A pair of contacting bodies, whose ratios of friction surface square values are small, is discussed. The results of computation of non-stationary temperature field at diamond polishing with the diamond disk containing charged layer are presented.
@article{MM_2005_17_7_a2,
author = {N. P. Starostin},
title = {Numeric solution of heat conduction problem for friction couples having low interference coefficient},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {23--30},
year = {2005},
volume = {17},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2005_17_7_a2/}
}
N. P. Starostin. Numeric solution of heat conduction problem for friction couples having low interference coefficient. Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 23-30. http://geodesic.mathdoc.fr/item/MM_2005_17_7_a2/
[1] Ieger Dzh. K., “Dvizhuschiesya istochniki tepla i temperatura treniya”, Prikladnaya mekhanika i mashinostroenie, 1952, no. 6, 22–39
[2] Floke A., Plei D., “Temperatury v zone kontakta v nesmazyvaemykh podshipnikakh. Trekhmernaya teoriya i ee proverka”, Trudy amerikanskogo obschestva inzhenerov-mekhanikov. Problemy treniya i smazki, 1981, no. 2, 61–71
[3] Evtushenko A. A., Semerak V. M., “Opredelenie temperatury pri skolzhenii po relsu”, Trenie i iznos, 20:6 (1999), 588–594 | MR
[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl
[5] Ettls S. M., “Vliyanie teplovykh effektov pri vysokikh skorostyakh skolzheniya”, Problemy treniya i smazki, 1986, no. 1, 71–79